轴对称腔体内淹没射流空化的滞后效应

王玉川 1,高传昌 2,谭磊 3,曹树良 3

振动与冲击 ›› 2015, Vol. 34 ›› Issue (18) : 118-122.

PDF(1729 KB)
PDF(1729 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (18) : 118-122.
论文

轴对称腔体内淹没射流空化的滞后效应

  • 王玉川 1,高传昌 2,谭磊 3,曹树良 3
作者信息 +

Hysteresis properties of submerged jet cavitation in axis-symmetrical cavity

  • WANG Yuchuan 1   GAO Chuanchang 2  TAN Lei 3  CAO Shuliang 3
Author information +
文章历史 +

摘要

对轴对称腔体内淹没射流的空化流动特征进行了高速摄像观测和试验研究,得到了腔体内和下喷嘴出口管内流动的空化数与工作射流雷诺数(Re)的变化规律。试验研究发现,在一定的Re范围内,空化数随Re数发生跳跃变化,腔体内空化形态发生突变,空泡形态由突变前的小直径空泡剧变为突变后的大直径空泡。Re减小变化过程发生空化数跳跃的临界雷诺数小于Re增大变化过程发生空化数跳跃的临界雷诺数,两者存在滞后效应。在试验的腔长范围(6≤Lc/d1≤13)内,Re增大变化过程和Re减小变化过程的临界雷诺数均随腔长线性变化,但后者变化的斜率小于前者,滞后效应随着腔长的增长而扩大。

Abstract

Experimental measurements and high speed video observations were carried out to study the cavitating flow properties of submerged jet in an axis-symmetrical cavity. The variations of cavitation numbers with Reynolds numbers (Re) of working jet were obtained in cavity chamber and outlet nozzle. From the experimental results, it was found that, in a certain range of Re, the cavitation number jumping variation occurred; and cavitating state changed suddenly in cavity chamber, which changed from small diameter bubbles to large diameter bubbles. The critical Reynolds numbers for cavitation number jump occurrence in decreasing process of working jet Re was smaller than that in increasing process of working jet Re, which showed a hysteresis property between two variation processes. In cavity chamber length range of experiments, the critical Reynolds numbers were linearly related to chamber lengths for both increasing and decreasing process of working jet Re variation, but the slope of cavitation number jump in decreasing process was smaller than in increasing process. The hysteresis properties enlarged as the chamber length growth.

关键词

淹没射流 / 轴对称腔体 / 空化 / 滞后效应 / 两相流动

Key words

submerged jet / axis-symmetrical cavity / cavitation / hysteresis property / two-phase flow

引用本文

导出引用
王玉川 1,高传昌 2,谭磊 3,曹树良 3. 轴对称腔体内淹没射流空化的滞后效应[J]. 振动与冲击, 2015, 34(18): 118-122
WANG Yuchuan 1 GAO Chuanchang 2 TAN Lei 3 CAO Shuliang 3. Hysteresis properties of submerged jet cavitation in axis-symmetrical cavity[J]. Journal of Vibration and Shock, 2015, 34(18): 118-122

参考文献

[1] Wu X, Chahine G. Characterization of the content of the cavitybehind a high-speed supercavitating body [J]. Journal of Fluids Engineering, 2007, 129:136–145.
[2] 龙新平, 陈茜, 韩宁. 射流泵空化影响因素的数值分析[J].应用基础与工程科学学报, 2009, 17(3): 461-469.
LONG Xinping, CHEN Qian, HAN Ning. Numerical analysis on the factors affecting cavitation within jet pumps [J]. Journal of Basic Science and Engineering, 2009, 17(3):461-469.
[3]  Song X Z, Li G S, Yuan J P, et al.. Mechanisms and field test of solution mining by self-resonating cavitating water jets [J]. Petroleum Science, 2010, 7(3):385–389.
[4] 高传昌, 赵礼, 刘新阳, 等. 淹没条件下自激脉冲射流冲蚀试验研究[J]. 排灌机械工程学报, 2012, 30(1): 53-56.
GAO Chuanchang, ZHAO Li, LIU Xinyang, et al.. Experiment research on erosion of self-excited inspired pulsatile jet in submerged conditions [J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(1): 53-56.
[5] 焦磊, 吴大转, 王乐勤, 等. 两种喷嘴喷射性能的试验研究[J]. 工程热物理学报, 2006, 27(6): 962-964.
JIAO Lei, WU Dazhuan, WANG Leqin, et al. Experimental study on the spurting characteristic of two types of jet [J]. Journal of Engineering Thermophysics, 2006, 27(6): 962-964.
[6] Peng G Y, Shimizu S. Progress in numerical simulation of cavitating water jets [J]. Journal of Hydrodynamics, 2013, 25(4):502-509.
[7]  Gopalan S, Katz J, Knio O. The flow structure in the near field of jets and its effect on cavitation inception [J]. Journal of Fluid Mechanics, 1999, 398:1–43.
[8] 孙龙泉, 张忠宇, 丁建军, 等. 可压缩流体射流冲击平板的压力特性研究[J]. 振动与冲击, 2013, 32(3): 178-181.
SUN Longquan, ZHANG Zhongyu, DING Jianjun, et al.. Pressure characteristics of panels subjected to collision of compressible jet [J]. Journal of Vibration and Shock, 2013, 32(3): 178-181.
[9]  Soyama H, Yanauchi Y, Sato K, et al.. High-speed observation of ultrahigh-speed submerged water jets [J]. Experimental Thermal and Fluid Science, 1996, 12:411–416.
[10] Ooi K K. Scale effects on cavitation inception in submerged water jets: a new look [J]. Journal of Fluid Mechanics, 1985, 151:367–390.
[11] Michael M W, Brenden E, Amanda D, et al.. Cavitation of a submerged jet [J]. Experiments in Fluids, 2013, 54:1541.
[12] Soyama H. High-speed observation of a cavitating jet in air. Journal of Fluids Engineering, 2005, 127: 1095-1101.
[13] 裴江红, 唐川林, 胡东. 双腔室自激振荡喷嘴频率特性研究[J]. 振动与冲击, 2011, 23(1): 29-32.
PEI Jianghong, TANG Chuanlin, HU Dong. Self-excited oscillation frequency features of a pulsed water jet nozzle with double chamber [J]. Journal of Vibration and Shock, 2011, 23(1): 29-32.
[14] 刘新阳, 王松林, 高传昌, 等. 自激脉冲射流装置参数对性能影响试验研究[J]. 振动与冲击, 2012, 31(24): 112-114.
LIU Xinyang, WANG Songlin, GAO Chuanchang, et al.. Effects of parameters of self-excited pulsed jet equipment on its performance [J]. Journal of Vibration and Shock, 2012, 31(24): 112-114.
[15] 李根生, 沈忠厚, 周长山, 等. 自振空化射流冲击压力脉动特性实验研究. 水动力学研究与进展(A辑)[J], 2003, 18(5): 570-575.
LI Gensheng, SHEN Zhonghou, ZHOU Changshan, et al.. An experimental study on impact pressure of self-resonant cavitating jets [J]. Journal of Hydrodynamics (Series A) [J], 2003, 18(5): 570-575.

PDF(1729 KB)

Accesses

Citation

Detail

段落导航
相关文章

/