多频率衰减振动系统阻尼参数识别

霍兵勇,易伟建

振动与冲击 ›› 2015, Vol. 34 ›› Issue (18) : 190-194.

PDF(1688 KB)
PDF(1688 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (18) : 190-194.
论文

多频率衰减振动系统阻尼参数识别

  • 霍兵勇,易伟建
作者信息 +

Damping identification of free-decay response by discrete deconvolution techniques

  • Bingyong Huo, Weijian Yi
Author information +
文章历史 +

摘要

自由衰减信号在工程应用中十分常见,从冲击响应信号中识别真实准确的谐波参数就成为实验研究的关键,相关的参数识别研究不断深入,本文介绍一种识别阻尼的方法,包括3方面内容:(1)考虑自由衰减信号的谐噪比和阻尼因素,讨论了两个因素对参数识别的影响,(2)针对不同频率谐波的参数识别,先进行必要的信号前处理:截取有效信号长度后再截取周期整数倍部分,对称增加一倍信号,(3)用细化频谱识别谐波频率和初相位,反卷积方法识别谐波振幅的真实衰减过程。仿真模拟和实验信号分析证明理论方法的可行性和优越性,即无需假设阻尼模型,识别得到的谐波振幅随时间变化的时域序列。为实验揭示系统阻尼特性提供一种实用有效的技术方法。。
 

Abstract

The free-decay response (FDR) of dynamical system was widely used for identification of structural parameters in the field of many engineering, and comprehensive studies have been available in the related literatures. A new approach was proposed for identifying the damping of FDR. The approach included three main contents: (1) analyzing the accuracy of the identified parameters under the influence of damping ratio and harmonic-to-noise ratio (HNR), (2) for different frequency harmonics, necessarily deal with digital signal before extracting damping, i.e. firstly intercept whole number multiples of harmonic period based on effective signal, secondly symmetrically double the signal, (3) using discrete deconvolution technique for the identification of damping. Results show that the proposed approach is capable of identifying the structural parameters with acceptable accuracy, and provide an efficient way for revealing the structural damping characteristics and estimating the structural parameters. The approach does not need to depend on a prior knowledge of damping model, and the time sequence can be get that can be employed to reflect the changes of harmonic amplitude.

关键词

冲击响应 / 细化频谱 / 谐噪比 / 阻尼比 / 反卷积

Key words

free-decay response / Harmonic to Noise ratio / Damping ratio / Discrete deconvolution

引用本文

导出引用
霍兵勇,易伟建. 多频率衰减振动系统阻尼参数识别[J]. 振动与冲击, 2015, 34(18): 190-194
Bingyong Huo, Weijian Yi. Damping identification of free-decay response by discrete deconvolution techniques[J]. Journal of Vibration and Shock, 2015, 34(18): 190-194

参考文献

[1] YI W J, ZHOU Y, KUNNATH S, et al. Identification of localized frame parameters using higher natural modes [J]. Engineering Stuuctures, 2008, 30(11): 3082-94.
[2] NEILD S A, WILLIAMS M S, MCFADDEN P D. Nonlinear Vibration Characteristics of Damaged Concrete Beams [J]. Journal of Structural Engineering, 2003, 129(2): 260-8.
[3] MELHEM H, KIM H. Damage Detection in Concrete by Fourier and Wavelet Analyses [J]. Journal of Engineering Mechanics, 2003, 129(8): 571-7.
[4] MAAS S, Z RBES A, WALDMANN D, et al. Damage assessment of concrete structures through dynamic testing methods [J]. Engineering Structures, 2012, 34(1): 351-62.
[5] RUZZENE M, FASANA A, GARIBALDI L, et al. NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA [J]. Mechanical Systems and Signal Processing, 1997, 11(2): 207-18.
[6] KAREEM A, GURLEY K. Damping in structures: its evaluation and treatment of uncertainty [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59(2-3): 131-57.
[7] SLAVIČ J, SIMONOVSKI I, BOLTEŽAR M. Damping identification using a continuous wavelet transform: application to real data [J]. Journal of Sound and Vibration, 2003, 262(2): 291-307.
[8] CHEN G D, WANG Z C. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components [J]. Mechanical Systems and Signal Processing, 2011, 25(2): 1-22.
[9] BONILHA H S, DAWSON A E. Creating a Mastery Experience During the Voice Evaluation [J]. Journal of Voice, 2012, 1-7.
[10] YUMOTO E, GOULD W J, BAER T. Harmonics-to-noise ratio as an index of the degree of hoarseness [J]. The Journal of the Acoustical Society of America, 1982, 71(6): 1544-50.
[11] PAPAGIANNOPOULOS G A, BESKOS D E. On a modal damping identification model for non-classically damped linear building structures subjected to earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(3): 583-9.
[12] SULTAN C. Proportional damping approximation using the energy gain and simultaneous perturbation stochastic approximation [J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2210-24.
[13] ADHIKARI S. Damping Models for Structural Vibration [D]. Cambridge; Trinity College, Cambridge, 2000.
[14] WOODHOUSE J. Linear Damping Models for Structural Vibration [J]. Journal of Sound and Vibration, 1998, 215(3): 547–69.
[15] CHOPRA A K. Dynamics of Structures Theory and Applications to Earthquake Engineering [M]. 3 ed. London: Prentice Hall, 2006.
[16] FASANA A, PIOMBO B A D. IDENTIFICATION OF LINEAR MECHANICAL SYSTEMS BY DECONVOLUTION TECHNIQUES [J]. Mechanical Systems and Signal Processing, 1997, 11(3): 351-73.
[17] KRANIAUSKAS P. Transforms in signals and systems [M]. The Great Britain: Addison-Wesley, 1992.
[18] OPPENHEIM A V, SCHAFER R W. Discrete-Time Signal Processing [M]. 3 ed. London: Prentice Hall, 2009.
[19] SLAVIČ J, BOLTEŽAR M. Damping identification with the Morlet-wave [J]. Mechanical Systems and Signal Processing, 2011, 26(5): 1632-45.
[20] STASZEWSKI W J. Identification of Damping in MDOF Systems Using Time-scale Decomposition [J]. Journal of Sound and Vibration, 1997, 203(2): 283-305.
 

PDF(1688 KB)

951

Accesses

0

Citation

Detail

段落导航
相关文章

/