偏航状态下风力机塔架-叶片耦合结构气弹响应分析

柯世堂 王同光

振动与冲击 ›› 2015, Vol. 34 ›› Issue (18) : 33-38.

PDF(1848 KB)
PDF(1848 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (18) : 33-38.
论文

偏航状态下风力机塔架-叶片耦合结构气弹响应分析

  • 柯世堂    王同光
作者信息 +

Aero-elastic Responses Analysis of Wind Turbine Tower-blade Coupled Model in Yaw Condition

  • Ke Shitang; Wang Tongguang
Author information +
文章历史 +

摘要

提出一套快速预测偏航状态下风力机全机结构气弹响应的分析方法。以南京航空航天大学自主研发的5MW特大型概念风力机为例,建立风力机塔架-叶片耦合模型获取模态信息;采用谐波叠加法和改进的叶素-动量理论计算气动荷载,并考虑了偏航角对诱导速度的影响;再运用模态叠加法求解风力机耦合动力学方程,通过迭代循环更新叶片速度和气动力,对风力机塔架-叶片耦合结构进行气动载荷和气弹响应计算,并通过参数分析归纳出偏航角和气动弹性对风力机全机动态响应的影响规律。研究结论可为此类特大型风力机塔架-叶片耦合结构的抗风设计提供科学依据。

Abstract

A fast method to calculate aero-elastic responses of wind turbine tower-blade coupled structure is proposed. By the 5 MW wind turbine system designed by Nanjing University of aeronautics and astronautics as the example, the finite element model of a wind turbine tower-blade coupled model is established to obtain the information of dynamic characteristics. The harmonic superposition method and modified blade element momentum theory are applied to calculate aerodynamic load, which considers the influence of yaw conditions. The mode superposition method is used to calculate the kinetic equation of wind turbine system, the blade velocity and dynamic load are updated through iterative loop, then the aero-elastic responses of wind turbine system is finished. Finally the influence rule of yaw angle on wind-induced responses is discussed. The research could contribute to wind-resistant design of structure for a large-scale wind turbine tower-blade system.
 

关键词

关键词:风力机塔架-叶片耦合结构 / 偏航角 / 气动载荷 / 叶素-动量理论 / 气弹响应

Key words

Wind turbine tower-blade coupled system / yaw angle / aerodynamic load / blade element momentum theory / aero-elastic response

引用本文

导出引用
柯世堂 王同光. 偏航状态下风力机塔架-叶片耦合结构气弹响应分析[J]. 振动与冲击, 2015, 34(18): 33-38
Ke Shitang; Wang Tongguang. Aero-elastic Responses Analysis of Wind Turbine Tower-blade Coupled Model in Yaw Condition[J]. Journal of Vibration and Shock, 2015, 34(18): 33-38

参考文献

[1] Ronold K O, Larsen G C. Optimization of a design code for wind turbine rotor blades in fatigue [J]. Engineering Structure, 2001, 23: 993-1002
[2] 任勇生, 张明辉. 水平轴风力机叶片的弯扭耦合气弹稳定性研究[J]. 振动与冲击, 2010, 29(7): 196-200.
Ren Yongsheng, Zhang Minghui. Aeroelastic stability study on coupled flutter for horizontal axis wind turbine blades[J]. Journal of Vibration and Shock, 2010, 29(7): 196-200.
[3] 廖明夫, 黄巍, 董礼, 等. 风力机偏航引起的失稳振动[J]. 太阳能学报, 2009, 30(4): 488-492.
Liao Mingfu, Huang Wei, Dong Li. LI Deyuan, LIU Shengxiang. Fatigue characteristics analysis of wind turbine tower under wind-wave combined effect[J]. Acta energiae solaris sinica, 2009, 30(4): 488-492.
[4] 陈佳慧, 王同光. 偏航状态下的风力机叶片气弹响应计算[J]. 南京航空航天大学学报. 2011, 43(5): 629-635
Chen Jiahui, Wang Tongguang. Aeroelastic Responses Calculation of Wind Turbine Blade in Yaw Condition [J]. Journal of Nanjing University of Aeronautics and Astronuatics. 2011, 43(5): 629-635
[5] 刘雄, 陈严, 叶枝全. 风力机气动与结构 CAD 软件[J]. 太阳能学报, 2001, 22(3): 346-350.
Liu Xiong, Chen Yan, Ye Zhiquan. WIND TURBINE AERODYNAMIC PERFORMANCE AND STRUCTURE CAD SOFTWARE[J]. Acta Energiae Solaris Sinica, 2001, 22(3): 346-350.
[6] 牛蔺楷, 杨洁明, 高俊云. 基于坐标变换方法的风力机偏航轴承载荷分布的分析与计算[J]. 工程力学, 2012, 10: 044.
NIU Lin-kai,YANG Jie-ming,GAO Jun-yun. DETERMINATION OF LOAD DISTRIBUTION IN YAW BEARING OF WIND TURBINE USING COORDINATE TRANSFORMATION METHOD[J]. Engineering Mechanics, 2012, 29(10): 282-287,300.
[7] 查顾兵, 竺晓程, 沈昕, 等. 水平轴风力机在偏航情况下动态失速模型分析[J]. 太阳能学报, 2009, 30(9): 1297-1300.
Zha Gubin, Zhu Xiaocheng, Shen Xi. Dynamic stall modeling of horizontal axis wind turbine in yaw considion[J]. Acta energiae solaris sinica. 2009, 30(9): 1297-1300.
[8] Bazilevs Y., Hsu M. C., Kiendl J., et al., 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades[J]. International Journal for numerical methods in fluids. 2011, 65(1), 236-253.
[9] Tempel J V D. Design of support structures for offshore wind turbines[D]. Netherlands: Delft University of Technology, 2006
[10] Wang T. G., Wang L., Zhong W., et al., Large-scale wind turbine blade design and aerodynamic analysis[J]. Chinese Science Bulletin. 2012, 57(5), 466-472.
[11] 陈小波, 陈建云. 海上风力发电塔脉动风速时程数值模拟[J]. 中国电机工程学报. 2008, 28(32): 111-116
CHEN Xiaobo, CHEN Jianyun. Numerical simulation of fluctuating wind velocity time series of offshore wind turbine[J]. Proceedings of the CSEE. 2008, 28(32): 111-116
[12] 伍艳, 谢华, 王同光. 风力机叶片的非定常气动特性计算方法的改进[J]. 工程力学. 2008, 25(10): 54-60
WU Yan, XIE Hua, WANG Tongguang. Modification of calculating unsteady aerodynamic characteristics of wind turbine blades[J]. Engineering Mechanics. 2008, 25(10): 54-60
[13] 柯世堂, 王同光, 赵林, 葛耀君. 风力机风振背景、共振响应特性及耦合项分析[J]. 中国电机工程学报, 2013, 33(26): 101-108
Ke Shitang, Wang Tongguang, Zhao Lin, Ge Yaojun. Background, Resonant Components and Coupled Effect of Wind-induced Responses on Wind Turbine Systems[J]. Proceeding of the CSEE, 2013,V33(26): 101-108
[14] Ahsan Kareem.Numerical simulation of wind effects:a probabilistic perspective[J].Journal of Wind Engineering and Industrial Aerodynamics,2008(96):1472-1497
[15] 61400-1, 2005廖明夫. 风力发电技术[M]. 西安, 西北工业大学出版社, 2008
LIAO Mingfu. wind turbine technologies[M]. Xi’an, The northwest industry university press, 2008
[16] Burton T, Sharpe D, Jenkins N, et al. (2001). Wind energy handbook [M]. Chichester, John Wiley&Sons

PDF(1848 KB)

Accesses

Citation

Detail

段落导航
相关文章

/