为研究叶片包角对离心泵作透平瞬态水力径向力的影响,以一台蜗壳式离心泵反转作透平为研究对象,保持叶轮和蜗壳其他几何参数不变,应用计算流体力学软件CFX对泵作透平全流道内多工况瞬态流动特性进行数值计算,并对预测性能进行了试验验证。结果表明,作用在叶轮上的径向力,当叶片包角增加超过一定值时小流量工况下减小不明显,而大流量下减小显著。随包角增加,作用于蜗壳上的径向力减小并向第四象限偏移。叶片包角存在一个合适的取值范围,使得泵作透平运行在大流量工况下时径向力较小。
Abstract
In order to study the effects of blade wrap angle on the radial force of centrifugal pump as turbine, a single volute vaneless counter-rotating centrifugal pump was chosen as research object. The blade wrap angle was varied from 100° to 115°and 130°, while the volute and other geometric parameters were kept constant. The transient flow characteristics under multi operating conditions in whole flow passages of a centrifugal pump as turbine was studied numerically using CFX, with demonstrated energy performance. The results show that when the blade warp angle increases more than a certain value, the radial force on the impeller reduces little at low flow rates, while reduces obviously at high flow rates. The radial force on the volute reduces and moves to the fourth quadrant as the blade warp angle increases. The blade warp angle should be at suitable range to ensure a lower radial force level at higher flow rates.
关键词
离心泵 /
泵作透平 /
径向力 /
叶片包角
{{custom_keyword}} /
Key words
centrifugal pump /
pump as turbine /
radial force /
blade wrap angle
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 论立勇, 谢英柏, 杨先亮. 基于管输天然气压力能回收的液化调峰方案[J]. 天然气工业, 2006, 26(7): 114-116.
LUN Li-yong, XIE Ying-bo, YANG Xian-liang. LNG peak-shaving proposal based on pressure energy recovery of pipe gas[J]. Natur. Gas Ind, 2006, 26(7): 114-116.
[2] 杨军虎, 张雪宁, 王晓晖. 基于离心泵的多级液力透平的性能预测与数值模拟[J]. 兰州理工大学学报, 2012, 38(2): 42-46.
YANG Jun-hu, ZHANG Xue-ning, WANG Xiao-hui. Performance prediction and numerical simulation of hydraulic turbine based on multi-stage centrifugal pump[J]. Lanzhou Ligong Daxue Xuebao, 2012, 38(2),42-46.
[3] 王松岭, 论立勇, 谢英柏, 等. 基于天然气管网压力能回收的联合循环构思[J]. 热能动力工程, 2005, 20(6): 628-631.
WANG Song-ling, LUN Li-yong, XIE Ying-bo, et al. Combined Cycle System Concept for the Recovery of Pressure Energy of a Natural-gas Pipe Network[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(6): 628-631.
[4] 郑志, 王树立, 王婷, 等. 天然气输配过程流体压力能回收技术现状与展望[J]. 天然气与石油, 2009, 27(1): 11-15.
ZHENG Zhi, WANG Shu-li, WANG Ting, et al. Present Status and Prospect of Fluid Pressure Energy Recovery in Natural Gas Transmission and Distribution [J]. Natural Gas and Oil, 2009, 27(1): 11-15.
[5] 杨孙圣, 李强, 黄志攀, 等. 不同比转数离心泵作透平研究[J]. 农业机械学报, 2013, 44(3): 69-72.
YANG Sun-sheng, LI Qiang, HUANG Zhi-pan, et al. Research on different specific speed pumps used as turbines[J]. Nongye Jixie Xuebao(Transactions of the Chinese Society of Agricultural Machinery), 2013, 44(3): 69-72.
[6] González J, Parrondo J, Santolaria C, et al. Steady and unsteady radial forces for a centrifugal pump with impeller to tongue gap variation[J]. Journal of fluids engineering, 2006, 128(3): 454-462.
[7] Adkins D R, Brennen C E. Analyses of Hydrodynamic Radial Forces on Centrifugal Pump Impellers[J]. Journal of Fluids Engineering, 1988, 110(1): 20–28.
[8] Barrio R, Fernndez J, Blanco E, et al. Estimation of radial load in centrifugal pumps using computational fluid dynamics[J]. European Journal of Mechanics B/Fluid, 2011, 30(3) : 316-324.
[9] 吴登昊, 袁寿其, 任芸, 等. 叶片几何参数对管道泵径向力及振动的影响[J]. 排灌机械工程学报, 2013, 31(4): 277-283.
WU Deng-hao, YUAN Shou-qi, REN Yun, et al. Effects of blade geometry parameters on radial force and vibration of in-line circulator pump[J]. Journal of drainage and irrigation machinery engineering, 2013, 31(4): 277-283.
[10] Spence R, Amaral-Teixeira J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests[J]. Computers & Fluids, 2008, 37(6): 690-704.
[11] Dai Cui, Kong Fan-yu, Dong Liang. Pressure fluctuation and its influencing factor analysis in circulating water pump[J]. Journal of Central South University, 2013, 20(1): 149-155.
[12] ANSYS User Manual 12.0. ANSYS Inc, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}