开挖爆破产生的地震波会诱发邻近隧道的动力响应,威胁邻近地下结构的稳定性。针对爆破应力波引起邻近隧道的质点振动和动应力集中效应,采用数值模拟方法,分析了爆破地震波中的P波对邻近圆形隧道的动力扰动特征。计算结果表明,应力波通过圆洞时,围岩中的主应力方向和动应力集中系数分布形态均与等效静态加载时相似,附加的动应力仅对圆洞洞壁附近围岩的主应力量值产生影响,而对洞壁以外围岩的主应力量值和主应力方向都将产生影响。其次,应力波通过圆洞时还将诱发振动速度集中现象,围岩质点的振动方向与波的传播方向总体一致,其振速集中系数与动应力集中系数的分布特征不同,且其最大值点位置相差约90°,这表明质点振动速度最大的位置并非动应力集中系数最大的位置。另外,圆洞洞壁最大振速集中系数随正则化波数的增加而增大,而最大动应力集中系数随正则化波数的增加而先增大后减小。
Abstract
The seismic waves induced by blasting will cause the dynamic response of neighboring tunnel, which is harmful to the stability of tunnel. The numerical simulation method is used to analyze the dynamic disturbing on the neighboring tunnels produced by blasting seismic waves. The numerical simulation results show that when stress wave passes through the round tunnel, the direction of principal stress and dynamic stress concentration factor distribution patterns of the surrounding rock mass are similar with the state under equivalent static loads. On the round tunnel wall, only the principal stress magnitude of rock mass disturbed by the additional dynamic stress. However, inside the round tunnel wall, both the principal stress magnitude and direction are disturbed. The vibration velocity concentration phenomenon in the tunnel will also induce by the stress wave, and rock particle vibration direction is same as the direction of wave propagation. The velocity concentration factor distribution patterns are different with the dynamic stress concentration factors, and the maximum point position difference between them is about 90 °. This phenomenon indicates that the maximum velocity concentration factor position dose not coincide with the maximum dynamic stress concentration factor position in the round tunnel. The maximum velocity concentration factor on the tunnel wall increases with regularization wave time; moreover, with regularization wave time increasing, the maximum dynamic stress concentration factor on the tunnel wall first increases and then decreases.
关键词
爆破振动 /
隧道 /
P波 /
动应力集中 /
振动速度集中 /
数值模拟
{{custom_keyword}} /
Key words
blasting vibration /
tunnel /
P wave /
dynamic stress concentration /
vibration velocity concentration /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]鲍亦兴,毛昭宙.弹性波的衍射与动应力集中[M].北京:科学出版社, 1993.( PAO Y H, MAO C C. The diffraction of elastic waves and dynamic stress concentrations[M]. Beijing:Science Press,1993(in Chinese))
[2] LEE V, CAO H. Diffraction of SV waves by circular canyons of various depths[J]. Journal of Engineering Mechanics, 1989, 115(9): 2035-2056.
[3] CAO H, LEE V W. Scattering and diffraction of plane P waves by circular cylindrical canyons with variable depth-to-width ratio[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 1979, 9(3):141-150.
[4] 梁建文, 张浩, LEE V W. 平面P 波入射下地下洞室群动应力集中问题解析解[J]. 岩土工程学报, 2004, 26(6):815-819.(LIANG Jian-wen, ZHANG Hao, LEE V W. An analytical solution for dynamic stress concentration of underground cavities under incident plane P waves [J]. Chinese Jounal of Geotechnical Engineering, 2004, 26(6): 815-819. (in Chinese))
[5] MANOOGIAN M, LEE V. Diffraction of SH-waves by subsurface inclusions of arbitrary shape[J]. Journal of Engineering Mechanics, 1996, 122(2): 123-129.
[6] 纪晓东, 梁建文, 杨建江. 地下圆形衬砌洞室在平面P波和SV 波入射下动应力集中问题的级数解[J].天津大学学报, 2006, 39(5): 511-517.(JI Xiao-dong, LIANG Jian-wen, YANG Jian-jiang. On dynamic stress concentration of an underground cylindrical lined cavity subjected to incident plane P and SV waves[J]. Journal of Tianjin University, 2006, 39(5): 511-517. (in Chinese))
[7]王光勇,余永强,张素华,刘希亮. 地下洞室动应力集中系数分布规律[J]. 辽宁工程技术大学学报(自然科学版).2010,29(4):597-600.(WANG Guangyong, YU Yongqiang, ZHANG Suhua, LIU Xiliang. Distribution of dynamic stress concentration factor Of underground openings[J]. Joumal of Liaoning Technical University (Natural Science), 2010, 29(4): 597-600. (in Chinese))
[8]易长平,卢文波,张建华.爆破振动作用下地下洞室临界振速的研究[J].爆破,2005,22(4):4-7.(YI Chang ping,LU Wen bo,ZHANG Jian hua. Study on Critical Failure Vibration Velocity of Underground Chambers under Action of Blasting Vibration[J]. Blasting, 2005, 22(4): 4-7(in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}