泥石流拦挡坝能够拦截泥石流所含固体物质,削减其下泄流量和密度,从而减轻泥石流对下游的危害,现已被广泛应用于泥石流灾害防治工程中。在常规的重力式拦挡坝基础之上,提出了一种带钢支撑的钢-混凝土组合式拦挡结构,通过常规坝体与新型坝体在固体冲击荷载作用下的模型试验,对比验证了新结构的抗冲击优越性。结果表明:支撑起到了抑制坝身裂缝出现和减小裂缝宽度的作用,有效减轻了撞击区域的破坏程度;相较于常规坝体,带支撑坝体动应变及加速度峰值均显著减小,最高减幅分别可达69.2%和47.8%,坝体变形及振动受到了支撑的限制;新型坝体动位移峰值显著小于常规坝体,其平均减幅可达46%左右,结构刚度得到了大幅度增强。
Abstract
Debris flow dams can intercept solid matter which is contained by debris flow and cut down the flow and density of discharged debris flow, thus the damages of debris flow to the downstream are reduced, this class structure has been widely applied to prevention and control engineering of the debris flow disaster now. A kind of steel-concrete combined structure with steel braces was presented based on the conventional gravity dams, and the superiority of the new structure in terms of impact resistance was verified contrastively by means of model experiments under solid impact force on the conventional and new-style dams. The results indicate that braces have played roles in restraining cracks and reducing width, they effectively alleviate the extent of damage in impact areas. Compared with the conventional dam, the dynamic strains and acceleration peak values of the dam with braces both observably reduce, the highest reduction ranges of them may be up to 69.2% and 47.8% respectively, so the deformation and vibration are limited by the braces. The dynamic displacement peak values of the new-style dam are significantly less than the conventional dam, and the average reduction range of this index may reach to about 46%, so the structural stiffness has been enhanced by a large margin.
关键词
固体力学 /
冲击动力响应 /
抗固体冲击试验 /
泥石流拦挡坝 /
HJC动态本构模型
{{custom_keyword}} /
Key words
solid mechanics /
dynamic responses under impact /
solid impact experiments /
debris flow dams /
HJC dynamic constitutive model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王继康,黄荣鉴,丁秀燕. 泥石流防治工程技术[M]. 北京:中国铁道出版社,1996.
[2] 何思明,李新坡,吴永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报,2007,26(8):1664-1669.
HE Si-ming, LI Xin-po, WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664-1669.
[3] 韩文兵,欧国强. 单切口坝对稀性泥石流的拦砂性能——试验研究与比较分析[J]. 自然灾害学报,2008,17(4):152-158.
HAN Wen-bing, OU Guo-qiang. Sediment-intercepting effect of slit dam on non-viscous debris flow: experimental study and comparative analysis[J]. Journal of Natural Disasters, 2008, 17(4): 152-158.
[4] 黄海,马东涛,王显林. “东川型”排导槽结构对泥石流流速影响的实验研究[J]. 山地学报,2009,27(5):551-556.
HUANG Hai, MA Dong-tao, WANG Xian-lin. Experimental study on the relationships between the velocity of debris flow and structure of the Dongchuan debris flow channel[J]. Journal of Mountain Science, 2009, 27(5): 551-556.
[5] 游勇. 泥石流梁式格栅坝拦砂性能试验研究[J]. 水土保持学报,2001,15(1):113-115.
YOU Yong. Characteristics of intercepting sediment of debris flow check dam[J]. Journal of Soil and Water Conservation, 2001, 15(1): 113-115.
[6] SHIEH C L, TING C H, PAN H W. Impulsive force of debris flow on a curved dam[J]. International Journal of Sediment Research, 2008, 23(2): 149-158.
[7] 孟一,易伟建. 混凝土圆柱体试件在低速冲击下动力效应的研究[J]. 振动与冲击,2011,30(3):205-210.
MENG Yi, YI Wei-jian. Dynamic behavior of concrete cylinder specimens under low velocity impact[J]. Journal of Vibration and Shock, 2011, 30(3): 205-210.
[8] 何晓英,唐红梅,朱绣竹,等. 泥石流浆体冲击特性实验研究[J]. 振动与冲击,2013,32(24):127-134.
HE Xiao-ying, TANG Hong-mei, ZHU Xiu-zhu, et al. Tests for impacting characteristics of debris flows slurry[J]. Journal of Vibration and Shock, 2013, 32(24): 127-134.
[9] 肖诗云,田子坤. 混凝土单轴动态受拉损伤试验研究[J]. 土木工程学报,2008,41(7):14-20.
XIAO Shi-yun, TIAN Zi-kun. Experimental study on the uniaxial dynamic tensile damage of concrete[J]. China Civil Engineering Journal, 2008, 41(7): 14-20.
[10] 张忠孝,董海威,陈江瑛,等. 混凝土材料的平板撞击实验与数值模拟研究[J]. 宁波大学学报(理工版),2011,24(3):80-85.
ZHANG Zhong-xiao, DONG Hai-wei, CHEN Jiang-ying, et al. Study on planar impact and numerical simulation for concrete materials[J]. Journal of Ningbo University(NSEE), 2011, 24(3): 80-85.
[11] 胡时胜,王道荣,刘剑飞. 混凝土材料动态力学性能的实验研究[J]. 工程力学,2001,18(5):115-118.
HU Shi-sheng, WANG Dao-rong, LIU Jian-fei. Experimental study of dynamic mechanical behavior of concrete[J]. Engineering Mechanics, 2001, 18(5): 115-118.
[12] 石少卿,康建功,汪敏,等. ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用[M]. 北京:中国建筑工业出版社,2011.
[13] 尚晓江,苏建宇,王化锋,等. ANSYS/LS-DYNA动力分析方法与工程实例[M]. 北京:中国水利水电出版社,2008.
[14] 李世民,李晓军. 几种常用混凝土动态损伤本构模型评述[J]. 混凝土,2011,(6):19-22.
LI Shi-min, LI Xiao-jun. Review on current dynamic damage constitutive models of concrete[J]. Concrete, 2011, (6): 19-22.
[15] 欧碧峰,王君杰. 碰撞条件下常用混凝土模型比较[J]. 计算机辅助工程,2008,17(1):1-5.
OU Bi-feng, WANG Jun-jie. Comparison of common concrete models under impact condition[J]. Computer Aided Engineering, 2008, 17(1): 1-5.
[16] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]. Fourteenth International Symposium on Ballistics, Quebec, Canada, 1993: 591-600.
[17] 王君杰,陈诚. 桥墩在船舶撞击作用下的损伤仿真研究[J]. 工程力学,2007,24(7):156-160.
WANG Jun-jie, CHEN Cheng. Simulation of damage for bridge pier subjected to ship impact[J]. Engineering Mechanics, 2007, 24(7): 156-160.
[18] 陈星明,刘彤,肖正学. 混凝土HJC模型抗侵彻参数敏感性数值模拟研究[J]. 高压物理学报,2012,26(3):313-318.
CHEN Xing-ming, LIU Tong, XIAO Zheng-xue. Numerical simulation study of parameter sensitivity analysis on concrete HJC model[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 313-318.
[19] 巫绪涛,李耀,李和平. 混凝土HJC本构模型参数的研究[J]. 应用力学学报,2010,27(2):340-344.
WU Xu-tao, LI Yao, LI He-ping. Research on the material constants of the HJC dynamic constitutive model for concrete[J]. Chinese Journal of Applied Mechanics, 2010, 27(2): 340-344.
[20] 熊益波. 基于Johnson-Holmquist模型的混凝土本构参数研究[D]. 西安:西北核技术研究所,2009.
[21] 陈诚. 桥梁设计船撞力及损伤状态仿真研究[D]. 上海:同济大学,2006.
[22] 熊安平. 基于LS-DYNA仿真模拟对船桥撞击的研究[D]. 南昌:华东交通大学,2012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}