研究了航空压气机呼吸裂纹叶片在转子位移激励下的联合共振幅频响应的变化规律;叶片连续体模型采用伽辽金法简化成单自由度的系统模型,通过多尺度法导出了叶片在参数激励与位移激励联合作用下的共振幅频响应的一阶近似方程;分析了裂纹的开合深度、裂纹所在截面的位置以及转子在垂直与水平方向上的位移幅值差对幅频响应的影响;数值结果表明以上三个物理参数是促使叶片动力学行为发生变化的敏感参数,控制这三个物理参数的变化是有效防止叶片进一步破坏的根本途径。
Abstract
The amplitude-frequency response of combination resonance of a aero-engine compress blade with a breathing crack under the lateral displace excitation of the rotor shaft was investigated. The blade was simplified into a single degree of freedom system using Galerkin’s method. The first order equation of the resonance response under the parametric excitation combining with the displacement excitation was obtained by using Multi-scale method. The effects of the opening and closing depth of crack, the location of lateral section with the crack and the displacement amplitude of the rotor shaft on the amplitude-frequency response of this resonance were analyzed. The obtained results show that it is the effective measures for preventing fatigue of the blade to control the changes of the above mentioned parameters which has a great influence on the dynamic behavior.
关键词
压气机叶片 /
呼吸裂纹 /
联合共振 /
伽辽金法 /
多尺度法
{{custom_keyword}} /
Key words
compressor blade /
breathing crack /
combination resonance /
Galerkin's method /
Multi-scale method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gudmundson P. The dynamic behavior of slender structures with cross-sectional cracks[J]. Journal of Mechanics Physics Solids, 1983, 31(4):329–345.
[2] Shen M H H and Chu Y C. Vibrations of Beams with a Fatigue Crack[J]. Computers & Structures, 1992, 45(1):79–93.
[3] Chondros T, Dimarogonas A and Yao J. Vibration of a Beam with a Breathing Crack[J]. Journal of Sound and Vibration, 2001, 239(1):57–67.
[4] Pugno N, Surace C and Ruotolo R. Evaluation of the Non-Linear Dynamic Response to Harmonic Excitation of a Beam with Several Breathing Cracks[J]. Journal of Sound and Vibration, 2000, 235(5):749–762.
[5] Bovsunovsky A P and Surace C. Consideration Regarding Superharmonic Vibrations of a Cracked Beam and the Variation in Damping Caused by the Presence of the Crack[J]. Journal of Sound and Vibration, 2005, 288(4–5):865–886.
[6] 胡家顺, 冯新, 周晶. 呼吸裂纹梁非线性动力特性研究。振动与冲击, 2009, 28(1):76–87.
Hu Jiashun, Feng Xin and Zhou Jing. Study on nonlinear dynamic response of a beam with a breathing crack[J]. Journal of vibration and shock, 2009, 28(1):76–87.
[7] Chen Lienwen and Shen Gengshin. Dynamic stability of cracked rotating beams of general orthotropy[J]. Composite Structures, 1997, 37(2):165–172.
[8] Wu M C and Huang S C. On the vibration of a cracked rotating blade. Shock and Vibration[J], 1998, 5(5–6):317–323.
[9] Saito A, Castanier M P, Pierre C and Poudou O. Efficient nonlinear vibration analysis of the forced response of rotating cracked blades[J]. Journal of Computational and Nonlinear Dynamics, 2008, 4(1):011005.
[10] Arvin H and Bakhtiari-Nejad F. Non-linear modal analysis of a rotating beam[J]. International Journal of Non-Linear Mechanics, 2011, 46(6):877–897.
[11] Rezaee M and Hassannejad R. Free vibration analysis of simply supported beam with breathing crack using perturbation method[J]. Acta Mechanica Solida Sinica, 2010, 23(5):459–470.
[12] Dimarogonas A D and Paipetis S A. Analytical methods in rotor dynamics[M]. Elsevier Applied Science, London, 1986.
[13] Douka E and Hadjileontiadis L J. Time–frequency analysis of the free vibration response of a beam with a breathing crack[J]. NDT&E International 2005, 38(1):3–10.
[14] Cheng M, Wu J and Wallace W. Vibrational response of a beam with a breathing Crack[J]. Journal of Sound and vibration, 225(1):201–208
[15] 陈予恕. 非线性振动. 高等教育出版社, 北京, 2002.
Chen Yushu. Nonlinear Vibration[M]. Higher Education Press, Beijing, china, 2002.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}