分析了一类含非连续阻尼的单自由度分段线性系统的振动性能,以研究某些参数对系统振动性能的影响。首先建立分段线性系统的数学模型,利用平均法求解,获得系统的幅频特性和相频特性;然后利用约束分岔理论,计算转迁集,得到系统可能的幅频响应类型,并利用幅频响应方程进行稳定性分析;最后计算系统的传递率,讨论了阻尼和刚度系数对传递率的影响,同时发现传递率曲线也产生了多解现象。
Abstract
This paper studied the vibration performance of a single degree of freedom systems with piecewise linear terms and discontinuous damper, aiming to clarify the influence of some parameters of the system on the system. Firstly, the mathematic model of the piecewise linear system was given. By employing an averaging method it was possible to obtain the magnitude-frequency characteristic and phase-frequency characteristic of the system under primary resonance excitation. The transition boundary could be calculated from this function on the basis of constraint bifurcation theory as well as all the type of the amplitude-frequency response. The function could be also used for stability analysis. Critical parameter boundary to avoid jumping was calculated by qualitatively analyzing the Amplitude-Frequency response in the sub-regions of the transition sets. Numerical calculation verified the feasibility of theoretical study. In addition, the influence of damping and stiffness coefficients on the global force transmissibility was discussed, and the transmissibility curve also produced multi-solution problem.
关键词
幅频响应 /
奇异性 /
稳定性 /
跳跃 /
减振
{{custom_keyword}} /
Key words
Amplitude-frequency response /
strangeness /
stability /
jump /
vibration reduction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 罗冠炜,张艳龙,谢建华. 含对称刚性约束振动系统的周期运动和分岔[J]. 工程力学学报. 2007, 24(7): 44-52.
Luo Guanzhong,Zhang Jianhua.Periodic-impact motions and bifurcations of vibratory systems with symmetrical rigid constraints[J].Journal of engineering mechanics.2007, 24(7):44-52(in Chiniese)
[2] 吴志强,丁然,陈予恕. 约束含参分岔问题的分类[J]. 应用数学和力学. 2010(2): 127-133.
Wu Zhiqiang, Ding Ran,Chen Yushu. Classification of bifurcations for nonlinear dynamical problems with constraints[J]. Applied Mathematics and Mechanics, 2010,31(2):127-133(in Chiniese)
[3] 王林泽,赵文礼. 外加正弦驱动力抑制一类分段光滑系统的混沌运动[J]. 物理学报. 2005(9): 4038-4043.
Wang Linze, Zhao Wenli.Suppression of chaotic motion in a class of piecewise-smooth systems by using sine periodic force[J].Acta Physica Sinica. 2005(9): 4038-4043(in Chiniese)
[4] Luo G W, Xie J H. Codimension two bifurcation of periodic vibro-impact and chaos of a dual component system[J]. Physics Letters A. 2003, 313: 267-273.
[5] Luo G W, Chu Y D, Zhang Y L. Codimension two bifurcation of a vibro-bounce system[J]. Acta Mechanica Sinica. 2005, 21(2): 197-206.
[6] 方益奇,王克军,张明,等. 分段线性减振系统的振动性能分析[J]. 机械科学与技术. 2011(2): 251-255.
Fang Yiqi,Wang Kejun,Zhang Ming, et al. An analysis of vibration performance of piecewise linear vibration-reduction system[J]. Mechanical Science and Technology, 2011,30(2):251-255(in Chiniese)
[7] 徐得元,唐国安. 限位弹性-阻尼元件设计及隔振效果研究[J]. 上海航天. 2012, 29(3): 42-48.
Xu Deyuan, Tang Guoan. Design and vibration isolation study of elastic damping element with displacement restriction[J].Aerospace Shanghai. 2012, 29(3): 42-48(in Chinese)
[8] 吴志强,陈予恕. 含约束非线性动力系统的分岔分类[J]. 应用数学和力学. 2002(5): 477-482.
Wu Zhiqiang,Chen Yushu. Classification of bifurcations for nonlinear dynamical problems with constraints[J]. Applied Mathematics and Mechanics, 2002,23(5):477-482(in Chiniese)
[9] 陈予恕. 非线性振动系统的分叉和混沌理论[M]. 北京:高等教育出版社,1993
Chen Yushu.Nonlinear vibration system of bifurcation and chaos theory[M]. Beijing: Higher Education Press, 1993(in Chinese)
[10] Jazar G N, Mahinfalah M, Deshpande S. Design of a piecewise linear vibration isolator for jump avoidance[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2007, 221(3): 441-449.
[11] Jazar G N, Houim R, Narimani A, et al. Frequency response and jump avoidance in a nonlinear passive engine mount[J]. Journal of Vibration and Control. 2006, 12(11): 1205-1237.
[12] Deshpande S, Mehta S, Jazar G N. Jump avoidance conditions for piecewise linear vibration isolator[C]. 2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}