基于MIMO信号降噪的模态参数识别研究

包兴先1,熊丛博2,李翠琳3,田玉芹4

振动与冲击 ›› 2015, Vol. 34 ›› Issue (19) : 157-162.

PDF(2097 KB)
PDF(2097 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (19) : 157-162.
论文

基于MIMO信号降噪的模态参数识别研究

  • 包兴先1 ,熊丛博2,李翠琳3,田玉芹4
作者信息 +

Modal parameters identification based on noise rejection for MIMO signals

  •   BAO Xing-xian1, XIONG Cong-bo2, LI Cui-lin3, TIAN Yu-qin2
Author information +
文章历史 +

摘要

发展了一种基于多输入多输出(MIMO)信号降噪的模态参数识别方法。首先对实测的MIMO脉冲响应数据构建block-Hankel矩阵,然后通过模型阶次指标确定矩阵的秩,进而基于结构矩阵低秩逼近(SLRA)计算得到降噪后的信号,最后通过多参考点复指数法(PRCE)识别结构的模态参数。数值算例和模型实验结果表明,该方法对实测MIMO信号有很好的降噪作用,识别效果较好。

Abstract

A modal identification scheme based on noise rejection for MIMO signals was proposed in this paper. In this scheme the measured MIMO impulse response functions were firstly used to construct a block-Hankel matrix, and the rank of the matrix was got based on model order indicator, then the Structured Low Rank Approximation (SLRA) method was implemented to achieve the filtered data. Finally the modal parameters were estimated by using PRCE method from the noise rejection MIMO signals. The effectiveness of the proposed scheme was verified by using numerical and experimental studies.

关键词

多输入多输出 / 模型阶次 / 低秩逼近 / block-Hankel矩阵 / 模态参数识别

Key words

MIMO / model order / low rank approximation / block-Hankel matrix / modal parameters identification

引用本文

导出引用
包兴先1,熊丛博2,李翠琳3,田玉芹4. 基于MIMO信号降噪的模态参数识别研究[J]. 振动与冲击, 2015, 34(19): 157-162
BAO Xing-xian1, XIONG Cong-bo2, LI Cui-lin3, TIAN Yu-qin2. Modal parameters identification based on noise rejection for MIMO signals[J]. Journal of Vibration and Shock, 2015, 34(19): 157-162

参考文献

[1] Ewins D J. Modal Testing: Theory, Practice and applications [M]. 2nd Edition, Baldock, Hertfordshire, England: Research Studies Press, 2000.
[2] Wang Shuqing, Liu Fushun. New accuracy indicator to quanfity the true and false modes for eigensystem realization algorithm [J]. Structural engineering and mechanics, 2010, 34(5): 625-634.
[3] Hu S-L J, Bao X X, Li H J. Model order determination and noise removal for modal parameter estimation[J]. Mechanical Systems and Signal Processing, 2010, 24(6): 1605-1620.
[4] 易伟建,刘翔.动力系统模型阶次的确定[J].振动与冲击, 2008, 27(11): 12-16.
YI Wei-jian, LIU Xiang. Order identification of dynamic system model[J]. Journal of vibration and shock, 2008, 27(11): 12-16.
[5] 常军,张启伟,孙利民.稳定图方法在随机子空间识别模态参数中的应用[J].工程力学, 2007, 24(2): 39-44.
CHANG Jun, ZHANG Qi-wei, SUN Li-min. Application of stabilization diagram for modal paramenter identification using stochastic subspace method[J].Engineering mechanics, 2007, 24(2): 39-44.
[6] 林贵斌,陆秋海,郭铁能. 特征系统实现算法的小波去噪方法研究[J]. 工程力学, 2004, 21(6): 91-96.
LIN Gui-bin, LU Qiu-hai, GUO Tie-neng. A study of denoising method for Eigensystem Realization Algorithm based on wavelet analysis[J]. Engineering Mechanics, 2004, 21(6): 91-96.
[7] 汤宝平,何启源,蒋恒恒,等. 利用小波去噪和HHT的模态参数识别[J]. 振动、测试与诊断, 2009, 29(2): 197-200.
TANG Bao-ping, HE Qi-yuan, JIANG Heng-heng, et al. Modal parameter identification based on Hilbert Huang Transform and wavelet de-noising[J]. Journal of Vibration, Measurement & Diagnosis, 2009, 29(2): 197-200.
[8] 练继建,李火坤,张建伟. 基于奇异熵定阶降噪的水工结构振动模态ERA识别方法[J]. 中国科学E辑:技术科学, 2008, 38(9): 1398-1413.
LIAN Ji-jian, LI Huo-kun, ZHANG Jian-wei. The ERA modal parameters identification for hydro-structures based on model order determination and noise reduction using singular entropy[J]. Science in China (Series E: Technological Sciences), 2008, 38(9): 1398-1413.
[9] Sanliturk K Y, Cakar O, Noise elimination from measured frequency response functions[J]. Mechanical Systems and Signal Processing, 2005, 19: 615–631.
[10] 包兴先,李昌良,刘志慧.基于低秩Hankel矩阵逼近的模态参数识别方法[J].振动与冲击, 2014, 33(20): 57-62.
BAO Xing-xian, LI Chang-liang, LIU Zhi-hui. Modal parameters identification based on low rank approximation of a Hankel Matrix[J]. Journal of vibration and shock, 2014,33(20): 57-62.
[11] 包兴先,刘福顺,李华军,等. 复指数方法降噪技术及其试验研究[J]. 中国海洋大学学报, 2011, 41(1/2): 155-160.
BAO Xing-xian, LIU Fu-shun, LI Hua-jun, et al. The complex exponential method based on singal-noise separation for modal analysis[J]. Periodical of ocean university of China, 2011, 41(1/2): 155-160.
[12] 王树青,林裕裕,孟元栋,等.一种基于奇异值分解技术的模型定阶方法[J].振动与冲击, 2012, 31(15): 87-91.
WANG Shu-qing, LIN Yu-yu, MENG Yuang-dong, et al. Model order determination based on singular value decomposition[J]. Journal of vibration and shock, 2012, 31(15): 87-91.
[13] De Moor B. Total least squares for affinely structured matrices and the noisy realization problem[J]. IEEE Trans Signal Process, 1994, 42(11):3104–3113.

PDF(2097 KB)

969

Accesses

0

Citation

Detail

段落导航
相关文章

/