一种基于CR理论的大柔性机翼非线性气动弹性求解方法

王伟1,周洲1,祝小平2,王睿1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (19) : 62-70.

PDF(2522 KB)
PDF(2522 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (19) : 62-70.
论文

一种基于CR理论的大柔性机翼非线性气动弹性求解方法

  • 王伟1 ,周洲1,祝小平2,王睿1
作者信息 +

CO-ROTATIONAL APPROACH OF SOLVING NONLINEAR AEROELASTICY  OF VERY FLEXIBLE WINGS

  •   WANG Wei 1,ZHOU Zhou 1,ZHU Xiao-ping 2,WANG Rui 1 
Author information +
文章历史 +

摘要

大展弦比大柔性机翼在气动载荷的作用下,产生较大的弹性变形,其惯性特性、刚度特性、动气动弹性特性等亦发生较大改变,常规的线性气动弹性分析方法不再适用。基于Co-rotational(CR)理论,推导了机翼变形后的切线刚度矩阵和质量矩阵,建立了考虑几何非线性效应的大柔性机翼结构动力学模型;耦合改进的ONERA非线性非定常气动力模型,提出了一种适用于大柔性机翼的非线性气动弹性求解方法。采用Newmark直接数值积分法及松耦合技术在时域内对气动弹性运动方程进行求解,对所提出的非线性气动弹性求解方法的正确性和精度进行了验证,并研究了大柔性机翼的极限环颤振特性。研究表明:适用于大柔性机翼完整的非线性气动弹性建模需要考虑机翼结构大变形和非定常气动力动态失速等非线性因素;弯曲变形可降低临界极限环颤振速度的15%以上,而前移弹性轴能够有效的提高临界极限环颤振速度;所提出的非线性气动弹性求解方法具有较好的精度和效率,满足大柔性机翼非线性气动弹性的求解需求。

Abstract

Very flexible wings under aerodynamic loads tend to produce large deformation, which result in significant changes in inertial and stiffness characteristics as well as in dynamic aeroelastic response, and the linear aeroelastic model no longer applicable. Based on co-rotational(CR) theory, the tangent stiff matrix and mass matrix are derived, and the dynamical equilibrium equations of geometrically nonlinear structures of space beam elements are established in this paper. Coupling ONERA dynamic stall model, an efficient method of solving nonlinear aeroelasticy of very flexible wings is proposed. Using newmark direct integration method and loose coupled algorithms, a numerical procedure for solving nonlinear aeroelastic governing equations is presented, and the efficiency and precision of the method was proved through a test case. The results and their analysis show preliminary that: structural and aerodynamic nonlinearities should be considered for complete nonlinear dynamic aeroelastic simulations of very flexible wings; the critical limit cycle oscillation speed will decreases by 15% or more due to bending deformation of the wing, but will improved by translating elastic axis; the proposed method of solving nonlinear aeroelastic problems show a good precision and efficiency, and satisfied requirements of nonlinear aeroelastic analysis of very flexible wings.

关键词

非线性气动弹性 / 极限环颤振 / CR理论 / 非定常气动力 / 动态失速 / Newmark积分法

Key words

nonlinear aeroelasticity / limit cycle oscillation / CR theory / unsteady aerodynamics / dynamic stall / newmark integration method

引用本文

导出引用
王伟1,周洲1,祝小平2,王睿1. 一种基于CR理论的大柔性机翼非线性气动弹性求解方法[J]. 振动与冲击, 2015, 34(19): 62-70
WANG Wei 1,ZHOU Zhou 1,ZHU Xiao-ping 2,WANG Rui 1 . CO-ROTATIONAL APPROACH OF SOLVING NONLINEAR AEROELASTICY  OF VERY FLEXIBLE WINGS[J]. Journal of Vibration and Shock, 2015, 34(19): 62-70

参考文献

[1] M.J. Patil, D.H. Hodges. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ration wings[J].Journal of Fluids and Structures,2004,19:905-915.
[2] M.J. Patil, D.H. Hodges, C E.S Cesnik. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft [R]. AIAA-99-1470.
[3] M.J. Patil, D.H. Hodges. Flight dynamics of Highly Flexible Flying wings [J]. Journal of aircraft,2006,43(6):1790-1798.
[4] M.J.Patil, D.H.Hodges, C.E.S.Cesnik. Limit cycle oscillations in high-aspect-ratio wings[J].Journal of fluid and structures,2001,15:107-132.
[5] Xie Chang Chuan, Yang Chao. Linearization methods of nonlinear aeroelastic stability for complete aircraft with high-aspect-ratio wings[J]. Sci China Tech Sci,2011, 54:403-411.
[6] S.Shams, M.H.Sadr, H.Haddadpour.An efficient method for nonlinear aeroelasticy of slender wings[J].Nonlinear Dynamics,2012,67:659-681.
[7] 周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J]. 西南交通大学学报,2006,41(6):690-695.
Zhou Lingyuan, Li Qiao. Updated Lagrangian Co-rotational Formulation for Geometrically Nonlinear FE Analysis of 3D Beam Element[J].Journal of Southwest Jiaotong Unoversity,2006,41(6):690-695(in chinese).
[8] Belytschko T, Schwer L. Large displacement, transient analysis of space frames[J]. International journal for numerical methods in engineering, 1977, 11:65-84.
[9] Crisfield MA. A consistent Co-rotational formulation for non-linear, three-dimensional, beam element[J]. Computer Methods In Applied Mechanics And Engineering, 1990,81:131-150.
[10] Crisfield MA. Non-linear finite element analysis of solids and structures, Volume 2: Advanced topics[M]. John Wiley & Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto,2000.
[11] Crisfield MA, Galvanetto U, Jelenić G. Dynamics of 3-D co-rotational beams[J]. Computational Mechanics, 1997,20:507-519.
[12] Ghosh S, Roy D. Consistent quaternion interpolation for objective finite element approximation of geometrically exact beams[J]. Computer Methods In Applied Mechanics And Engineering,2008, 198:555-571.
[13] Le TN, Battini JM, Hjiaj M. Dynamics of 3d beam elements in a corotational context: a comparative study of established and new formulation[J]. Finite Elements in Analysis and Design,2012,61:97-111.
[14] 王伟,周洲,祝小平等.考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014, 32(4):499-504.
Wang Wei, Zhou Zhou, Zhu Xiaoping,Wang Rui. Static Aeroelastic Characteristics Analysis of a Very Flexible Solar Powered UAV with Geometrical Nonlinear Effect Considered[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):499-504 (in Chinese)
[15] Rafael Palacios, Joseba Murua, Robert Cook. Structural and aerodynamic models in nonlinear flight dynamics of very flexible aircraft [J]. AIAA Journal, 2010,48 (11):2648-2659.
[16] 吴国荣,颜桂云,陈福全.柔性梁大柔度动力响应分析的多体系统方法[J].振动与冲击,2007,26(3):87-89.
Wu Guorong,Yan Guiyun,Chen Fuquan.Large deflection dynamic response analysis of flexible beams bi multibody system method[J].Journal of vibration and shock, 2007,26(3):87-89(in chinese).
[17] 张健,向锦武.侧向随动力作用下大展弦比柔性机翼的稳定性[J].航空学报,2010,31(11):2115-2123.
[18] V.Laxman,C.Venkatesan.Chaotic response of an airfoil due to aeroelastic coupling and dynamic stall[J].AIAA Jourmal, 2007,45(1):271-280.

PDF(2522 KB)

946

Accesses

0

Citation

Detail

段落导航
相关文章

/