管道中连续振动信号衰减模型与传递特性研究

刘 均1,2 袁 峰1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (19) : 84-90.

PDF(1134 KB)
PDF(1134 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (19) : 84-90.
论文

管道中连续振动信号衰减模型与传递特性研究

  • 刘  均1,2  袁  峰1
作者信息 +

Research on Signal Attenuation Model and Transfer Characteristics for Continuous Vibration Signal Inside a Pipeline

  • LiuJun1,2  YuanFeng2
Author information +
文章历史 +

摘要

本文借鉴电力线输电理论中的阻抗和传递系数来描述连续压力波动在管道中的传递过程,建立了基于传递矩阵的连续波衰减模型,利用特征阻抗来描述管道本体特征对波动传递的影响,并以此模型为基础,分析了连续波在管道中传递时压力和流量之间的关系、以及管道终端阻抗和倾角对波动传递的影响。通过对模型的仿真计算,得出了在管道中连续波信号传递时,管道内压力波呈驻波分布的结论,同时分析了在不同终端阻抗下波动的分布情况;通过对管道内不同频率信号的衰减情况分析,绘制了管道内信号传递的幅频特性曲线,得出了随着频率的升高,管道内信号呈波动性衰减的结论。最后通过地面验证实验,说明了不同频率信号在相同管道内的传递情况符合仿真分析,为随钻测量过程中通信频率的选取提供了理论支持。

Abstract

In this paper, impedance and transmission coefficient of power line transmission theory are used to describe the continuous pressure vibrations in the transfer process of the pipeline. The continuous wave attenuation model, which by using characteristic impedance describes the influence of the pipeline’s property on the wave propagation, is established based on the transfer matrix. According to the attenuation model, this paper analyzes the relationship between pressure and flow while the continuous waves move along the pipeline, and the influence of terminal impedance and dip angle of pipelines on the wave transmission. Through the simulation and calculation on the model, it is concluded that pressure waves are in the standing wave distribution in the pipe when the continuous wave signal is transmitting in the pipeline. At the same time, the volatility transmissions under the different terminal impedances are analyzed. The amplitude-frequency characteristic curve of the signal transmission in the pipe is mapped by analyzing the distribution in different frequency signals in the pipeline. It can get a conclusion. The conclusion is that the signal in the pipe is in the attenuation volatility with the increase of frequency. And through the experiment on the ground, the situations about signal transmission of different frequencies in the same pipe are accord with the simulation analysis. This paper provides the theoretical support for the selection about the frequency of communication in the process of measurement while drilling.

关键词

幅频特性 / 随钻测量 / 传递系数 / 水力阻抗 / 压力波动

引用本文

导出引用
刘 均1,2 袁 峰1. 管道中连续振动信号衰减模型与传递特性研究[J]. 振动与冲击, 2015, 34(19): 84-90
LiuJun1,2 YuanFeng2. Research on Signal Attenuation Model and Transfer Characteristics for Continuous Vibration Signal Inside a Pipeline[J]. Journal of Vibration and Shock, 2015, 34(19): 84-90

参考文献

[1]Montaron B A, Hache J-M D, Voisin B. Improvements in MWD telemetry: The right data at the right time [R]. SPE,25356, 1993:337-346.
[2]石元会,刘志申,葛华,阳飞. 国内随钻测量技术引进及现场应用[J].国外测井技术. 2009(01):9-13.
SHI Yuan-hui, LIU Zhi-shen,GE Hua etc. Introduction and Field Application of Measurement While Drilling(MWD) Technology Inland[J]. World Well Logging Technology. 2009(01):9-13.
[3]张绍槐,张洁. 21世纪中国钻井技术发展与创新[J].石油学报.2001(06):63-68.
 ZHANG Shao-huai, ZHANG Jie. The Development and Creation of Drilling Technology in China During the 21th Century[J].Acta Petrolei Sinica. 2001(06):63-68.
[4]张春华,刘广华. 随钻测量系统技术发展现状及建议[J].钻采工业,2010,33(1):31-35.
 ZHANG Chun-hua, LIU Guang-hua. State of the Art and Development Trend of MWD System[J]. Oil Drilling & Production Technology, 2010,33(1):31-35.
[5]蔡文军,王平,祝远征等.机械式无线随钻测斜仪设计方案及关键技术[J].石油学报, 2006(27):103-106.
 CAI Wen-jun, WANG Ping, ZHU Yuan-zheng etc. Design Scheme and Key Techniques for Mechanical Wireless Inclinometer [J]. Acta Petrolei Sinica. 2006(27):103-106.
[6]刘修善,苏义脑.钻井液脉冲信号的传输特性分析[J]. 石油钻采工艺, 2000; 22( 4) : 8-10.
 LIU Xiu-shan, SU Yi-nao. Investigation on The Transmission Behaviors of Drilling Fluid Pulse Signal[J]. Oil Drilling & Production Technology, 2000;22(4):8-10.
[7] Klotz C, Kaniappan A, Thorsen AK. A New Mud Pulse Telemetry Systems Reduce Risks When Drilling Complex Extended Reach Well[C]. SPE 2008, 15203.
[8]何树山,刘修善.钻井液正脉冲信号的衰减分析[J].钻采工艺,2001, 24( 6):1- 12.
 HE Shu-shan,LIU Xiu-shan. Analysis of Signal Attenuation for Positive Drilling Fluid Pulse[J].Drilling & Production Technology, 2001, 24( 6):1- 12.
[9]沈跃,朱军,苏义脑等.钻井液压力正交相移键控信号沿定向井筒的传输特性[J].石油学报,2011;32(3):340-345.
 SHEN Yue, ZHU Jun, SU Yi-nao, Transmission Characteristics of the Drilling Fluid Pressure Quadrature Phase Shift Keying Signal Along a Directional Wellbore[J].Acta Petrolei Sinica, 2011;32(3):340-345.
[10] Klotz C,Bond P,Wasserman I,Priegnitz S.A New Mud Pulse Telemetry System for Enhanced MWD/LWD Application. SPE 112683 . 2008.
[11]王翔,王瑞和,纪国栋.井筒内钻井液连续脉冲信号传输频率相关摩阻模型.石油学报2009.30(3):445-449.
 WANG Xiang, WANG Rui-he, JI Guo-dong. Frequency Dependent Friction Model for Consecutive Pulse Signal of Drilling Fluid Transmitting in Borehole[J]. Acta Petrolei Sinica, 2009.30(3):445-449.
[12]石在虹, 刘修善. 井筒中钻井信息的传输动态分析[J].天然气工业, 2002,22(5):68-71.
 SHI Zai-hong,LIU Xiu-shan. An Analysis of Drilling Information Transmission Behavior in Wellbore[J].Natural Gas Industry, 2002,22(5) :68-71.
[13]边海龙,苏义脑等,连续波随钻测量信号井下传输特性分析[J].仪器仪表学报,2011.9:983-987.
BIAN Hai-long, SU Yi-nao, etc. Downhole Information Transmission Characteristic Analysis of Measurement While Drilling Continuous Wave Signal[J], Chinese Journal of Scientific Instrument, 2011(9):983-987.
[14] 沈跃,崔诗利,张令坦等.钻井液连续压力波信号的延迟差动检测及信号重构[J].石油学报.2013;34(2):353-358.
 SHEN Yue,CUI Shi-li,ZHANG Ling-tan. Delay Differential Detection and Signal reconstruction of Continuous Pressure-Wave Signals of Drilling Fluid[J], Acta Petrolei Sinica, 2013.34(2):353-358.
[15] 刘瑞文,管志川,李春山.钻柱振动信号的在线监测及应用[J].振动与冲击,2013,32(1):60-68.
LIU Rui-wen,GUAN Zhi-chuan,LI Chun-shan.Drilling string vibration online monitoring and its application[J].Journal of Vibration and Shock,2013,32(1):60-68.
[16] JianXun W, HuiJin L. A time-frequency mixed method for on-line monitoring of harmonics and interharmonics[A]. Proceedings of 2011 International Conference on Advanced Power System Automation and Protection(APAP 2011)[C]. 2011:28-233
[17] Ronghui L, Erbin Y, Xiu Y. Analysis of Transient Harmonics in Power Systems Based on Wavelet Packet Transform[A]. Proceedings of 2010 The 3rd International Conference on Power Electronics and Intelligent Transportation System(Volume 1)[C]. 2011:345-348.
[18] Jameson A. Time dependent calculations using multigrid, with applications to unsteady flow past airfoils and wings[J].AIAA Journal,1991,6: 1591-1596
[19]Boucher R F,Kitsiors E E.Simulation of fluid network dynamics by transmission line modeling, Proceedings of the institution of Mechanical Engineers[C], Part C:Joumal of Mechanical Engineering Science. Jan 1986, vol.200 :21-29
[20]罗志昌.流体网络理论[M],机械工业出版社,北京.1988:14-23.
LUO Zhi-chang, Fluid Network Theory [M], Machinery Industry Press.Beijing, 1988:14-23.
[21] 杨海根,芮筱亭,刘怡昕等. 多体系统传递矩阵法分布式并行计算研究. 振动工程学报,2014,27(1):9-15.
 YANG Hai-gen,RUI Xiao-ting,LIU Yi-xin etc. Study on distributed parallel computing of transfer matrix method for multibody systems.Journal of Vibration Engineering. 2014,27(1):9-15.
[22] 胡培民. 传递矩阵法在高频振动分析中的应用[J],振动与冲击.1996, 15(4):50-52.
HU Pei-ming .Analysis of High Frequency Vibration by Transfer Matrix Method [J]. Journal of Vibration and Shock, 1996, 15(4):50-52.
[23] 李小燕,匡波,徐济等.网络方法在管路流体动态仿真计算中的应用[J].核动力工程.2000.6(21):264-268.
LI Xiao-yan KUANG,Bo, XU Ji. Application of Network Method in Calculation of Dynamics of Pipe-Transmitted Fluids Simulation[J].Nuclear Power Engineering, 2000.6(21):264-268.

PDF(1134 KB)

741

Accesses

0

Citation

Detail

段落导航
相关文章

/