基于引力搜索神经网络的风电机组传动链故障识别

刘永前;徐 强;David Infield;田 德;龙 泉

振动与冲击 ›› 2015, Vol. 34 ›› Issue (2) : 134-137.

PDF(1079 KB)
PDF(1079 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (2) : 134-137.
论文

基于引力搜索神经网络的风电机组传动链故障识别

  • 刘永前1,徐 强1, David Infield1,2,田 德1,龙 泉3
作者信息 +

Fault identification of wind turbine drivetrain using neural network based on gravitational search algorithm

  • LIU Yong-qian1, XU Qiang1, David INFIELD1,2, TIAN De1, LONG Quan3
Author information +
文章历史 +

摘要

风电机组传动链的故障识别是风电场制定合理维修策略,进而减少停机时间、降低维修费用的关键,也是目前研究的热点与难点。首次将引力搜索算法用于BP神经网络初始权值和阈值的优化,提出基于引力搜索神经网络的风电机组传动链故障识别方法。算例结果表明,所提方法精度比BP神经网络高,能准确识别齿轮磨损、齿轮断齿、轴承松动这3种风电机组传动链典型故障,由此验证该方法的有效性。

Abstract

Fault identification of wind turbine drivetrain is the key for wind farms to make appropriate maintenance strategies to reduce the downtime and maintenance cost, and also one of the highly discussed issues and difficulties in recent research. Gravitational search algorithm was applied in the optimization of the initial weights and thresholds of BP neural network for the first time. Therefore, a fault identification method using BP neural network based on gravitational search algorithm was proposed and applied in wind turbine drivetrain. Tests showed that the presented method could precisely identify three typical wind turbine drivetrain faults, which were gear wear, tooth breaking and bearing looseness respectively, with higher average accuracy than BP neural network, so the effectiveness of the proposed method is verified.


关键词

风电机组传动链 / 故障识别 / BP神经网络 / 引力搜索算法

Key words

wind turbine drivetrain / fault identification / BP neural network / gravitational search algorithm

引用本文

导出引用
刘永前;徐 强;David Infield;田 德;龙 泉. 基于引力搜索神经网络的风电机组传动链故障识别[J]. 振动与冲击, 2015, 34(2): 134-137
LIU Yong-qian;XU Qiang;David INFIELD;TIAN De;LONG Quan . Fault identification of wind turbine drivetrain using neural network based on gravitational search algorithm[J]. Journal of Vibration and Shock, 2015, 34(2): 134-137

PDF(1079 KB)

482

Accesses

0

Citation

Detail

段落导航
相关文章

/