A method for damping identification using piecewise integral
ZHAO Xiao-dan,XU Jun-jie,WANG Xi-fu
Author information+
School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Show less
文章历史+
收稿日期
修回日期
出版日期
2014-05-26
2014-09-30
2015-10-25
发布日期
2015-10-25
摘要
提出利用分段积分列方程识别阻尼比方法。用快速傅里叶变换加连续傅里叶变换(Fast Fourier Transform plus Continuous Fourier Transform,FFT-FT)识别响应信号固有频率,并据此构造复指数函数;与响应信号进行两次时间不同的内积运算,控制运算时间为响应信号半周期整数倍;推导衰减系数计算公式,识别阻尼比。该方法具有控制内积运算时间消除负频率项影响特点,不受阻尼大小、采样长度限制,识别精度高,结合迭代运算能识别密集模态阻尼。仿真计算、实验表明,在曲轴阻尼实验中,该方法能准确识别阻尼的微小变化,具有工程实用性。
Abstract
A method using piecewise integral to identify damping ratios is proposed. Natural frequency of response signal is calculated by the application of Fast Fourier Transform plus Continuous Fourier Transform (FFT-FT). Construct a complex exponential function with the calculated natural frequency, and two inner product which have different integral time were conducted between response signal and the constructed exponential function. Control the time of inner product to be integer time semi-period of the response signal, and the formula of attenuation coefficient was derived. Accordingly, the damping ratio can be determined. Feature of this method is that interference of negative frequency item was eliminated by controlling the time of inner product. This method is not restricted by the size of damping ratios and the length of sample, and it has high precision. Damping ratios of closely spaced modes can be identified by this method combined with iterative algorithm. Digital simulations and experiment show that this method is effective. In Crankshaft experiment, small changes of damping ratios were identified. This method is practical in engineering.
ZHAO Xiao-dan,XU Jun-jie,WANG Xi-fu.
A method for damping identification using piecewise integral[J]. Journal of Vibration and Shock, 2015, 34(20): 109-114
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 于开平,邹经湘,庞世伟. 结构系统模态参数识别方法研究进展[J]. 世界科技研究与发展,2005,27(6):22-30.
YU Kai-ping,ZOU Jing-xiang,PANG Shi-wei. Research advance of modal parameter identification medthod for structural system[J]. Journal of World Sci-tech R & D,2005,27(6):22-30.
[2] 张淼,于澜,鞠伟. 基于频响函数矩阵计算尼系统动力响应的新方法[J]. 振动与冲击,2014,33(4):161-166.
ZHANG Miao, YU Lan, JU Wei. A new method for computing dynamic response of a damped linear system based on frequency response function matrix[J]. Journal of Vibration and Shock,2014,33(4):161-166.
[3] 王慧,刘正士. 一种识别结构模态阻尼比的方法[J]. 农业机械学报,2008,39(6):201-202.
WANG Hui,LIU Zheng-shi. A method identification of structural damping ratios[J]. Journal of Transactions of the Chinese Society for Agricultural Machinery,2008, 39(6):201-202.
[4] Lamarque C H,Penrot S,Cuer A. Damping identification in multi-degree-of-freedom systems via a wavelet- logarithmic decrement-part 1: theory[J]. Journal of Sound an Vibration,2000,235 (3):361-375.
[5] Staszewski W J. Identification of damping in MDOF systems using time-scale decomposition[J]. Journal of Sound and Vibration,1997,203 (2):283-305.
[6] Chen J,Xu Y L, Zhang R C. Modal parameter identification of tsing ma suspension bridge under typhoon victor: EMD-HT method[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92: 805- 827.
[7] 伊廷华,李宏男,王国新. 基于小波变换的 结构模态参数识别[J]. 振动工程学报,2006,19(1):51-56.
YI Ting-hua,LI Hong-nan,WANG Guo-xin. Structural modal parameter identification ba- s¬ed on wavelettransform[J].Journal of Vib¬¬¬r¬¬ation Engineering,2006,19(1):51-56.
[8] Tan Jiu-bin,Liu Yan,Wang Lei. Identification of modal parameters of a system with high damping and closely spaced modes by combining continuous wavelet transform with pattern search [J]. Mechanical Systems and Signal Processing,2008, 22:1055-1060.
[9] 王慧,刘正士,陈恩伟. 悬臂梁结构模态参数Hibert- Huang变换识别方法[J]. 农业机械学报,2008,39(9): 187-191.
WANG Hui,LIU Zheng-shi,CHEN En-wei. Application of HHT for modal parameters I-dentification
to cantilever beam structure[ J]. Transactions of the Chinese Society for Agri¬cultural Machinery,2008,39(9):187-191.
[10] 陈奎孚,张森文. 半功率法估计阻尼的一种改进[J]. 振动工程学报,2002,15(2):151-155.
CHEN Kui-fu,ZHANG Sen-wen. Improveme¬nt on the damping estimation by half powe¬rpoint method[J]. Journal of Vibration Engi¬n¬e¬ering,2002,15(2):151-155.
[11] 刘进明,应怀樵. FFT谱连续细化分析的傅里叶变换法[J]. 振动工程学报,1995,8(2):162-166.
LIU Jin-ming,YING Huai-Qiao. Zoom FFT spectrum by Fourier transform[J]. Journal of Vibration Engineering,1995,8(2):162-166.
[12] 赵晓丹,张忠业,骆英.基于内积运算与迭代算法的密集模态阻尼识别[J].农业机械学报,2011,42(4):206-210.
ZHAO Xiao-dan,ZHANG Zhong-ye,LUO Ying. Damping identification for closely s¬- p¬aced modes based on inner product calcu¬ lation and iterative algorithm[J].Journal¬¬¬¬ of Transactions of the ChineseSociety for Agricultural Machinery,2011,42(4):206- 210.
[13] 赵红发,南广仁. Riemann-Lebesgue定理的推广[J]. 长春师范学院学报:自然科学版,2008,7(5):3-4.
ZHAO Hong-fa,NAN Guang-ren. The prom¬ otion of Riemann-Lebesgue theory[J].Journ¬al of Changchun Normal University,2008,7 (5):3-4.
[14] 张敬芬,赵德友. 工程结构裂纹损伤振动诊断的发展现状和展望[J]. 振动与冲击,2002,21(4):22-26.
ZHANG Jing-fang,ZHAO De-you. Summary review of vibration-based crack diagnosis technique for engineering structures[J]. Journal of Vibration and Shock,200¬¬¬¬¬¬2,21(4):22-26.
[15] 李学鹏. 汽车发动机曲轴断裂原因分析[J]. 内燃机与动力装置,2011,2:50-52.
LI Xue-peng. Failure analysis of crankshaft in automobile engine[J]. Journal of I.C.E & Power Plant,2011,2:50-52.