一种适用于泄流结构振动分析的信号降噪方法

张建伟,江 琦,赵 瑜,朱良欢,郭 佳

振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 179-184.

PDF(2701 KB)
PDF(2701 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 179-184.
论文

一种适用于泄流结构振动分析的信号降噪方法

  • 张建伟,江  琦,赵  瑜,朱良欢,郭  佳
作者信息 +

A de-noising method for vibration signal of flood discharge structure

  • ZHANG Jian-wei,JIANG Qi,ZHAO Yu,ZHU Liang-huan,GUO Jia
Author information +
文章历史 +

摘要

针对低信噪比泄流结构振动信号有效信息难以提取问题,提出将小波阈值与经验模态分解(EMD)联合的信号降噪方法。利用小波阈值滤除大部分高频白噪声,降低EMD端点效应;进行EMD分解获得具有相对真实物理意义的固态模量(IMF);通过频谱分析重构特征信息IMF获得降噪信号。构造仿真信号,将该方法与数字滤波、小波分析及EMD降噪效果进行对比。结果表明,该方法能精确滤除泄流结构的振动噪声保留信号特征信息,滤波降噪较优越。将其用于拉西瓦拱坝水弹性模型,精确分析坝体结构振动优势频率,为坝体结构的安全运行与在线监测提供基础,亦为大型泄流结构在强背景噪声下的结构有效信息提取提供捷径。
 

Abstract

In view of the problem that useful characteristics of flood discharge structure vibration signal with low signal to noise ratio which extracted difficultly, a novel de-noising method, which combines wavelet threshold and empirical mode decomposition (EMD), was proposed. Firstly a part of white noises were filtered out with wavelet threshold method, which can reduce the endpoint effect of EMD; then decomposing the signal with EMD, obtained a series of intrinsic mode functions (IMF) which contains real physical meaning; finally reconstructed the IMF of characteristic information to achieve the de-noised signal through spectrum analysis. Constructing the simulation signal, and comparing the filtering effect of this method with digital filter, wavelet threshold and EMD, study shows that, it is a superior de-noising method, which can filter the vibration noise of flood discharge structure accurately and retain the characteristic information. It is used in Laxiwa arch dam hydro-elastic model, analyzing the dominate frequency of dam structure precisely, which can provide the basis for safe operation and on-line monitoring of the dam structure. This proposed method can effectively solve the problem of structure information extraction for large flood discharge structure under the background with strong noise. 
 
 
 

关键词

泄流结构 / 振动信号 / 低信噪比 / 小波与EMD联合降噪 / 优势频率

Key words

flood discharge structure / vibration signal / low signal to noise ratio / combined wavelet threshold and EMD / dominate frequency

引用本文

导出引用
张建伟,江 琦,赵 瑜,朱良欢,郭 佳. 一种适用于泄流结构振动分析的信号降噪方法[J]. 振动与冲击, 2015, 34(20): 179-184
ZHANG Jian-wei,JIANG Qi,ZHAO Yu,ZHU Liang-huan,GUO Jia. A de-noising method for vibration signal of flood discharge structure[J]. Journal of Vibration and Shock, 2015, 34(20): 179-184

参考文献

[1] 张建伟,康迎宾,张翌娜,等. 基于泄流响应的高拱坝模态参数辨识与动态监测[J]. 振动与冲击, 2010, 29(9):146- 150.
   ZHANG Jian-wei, KANG Ying-bin, ZHANG Yi-na, et al. Modal parameter identification and dynamic monitoring of high arch dam under vibration response induced by flow discharge[J]. Journal of Vibration and Shock, 2010, 29(9): 146-150.
[2] 练继建,张建伟,李火坤,等. 泄洪激励下高拱坝模态参数识别研究[J]. 振动与冲击, 2007, 26(12):101-105.
   LIAN Ji-jian, ZHANG Jian-wei, LI Huo-kun, et al. Study on modal parameter identification of high arch dam under flood discharge excitation[J]. Journal of Vibration and Shock, 2007, 26(12):101-105.
[3] Igor D, Jubisa S L, Marko S. Robust time-frequency representation based on the signal normalization and concentration measures[J].Signal Processing, 2014(104): 423-431.
[4] 胡晓依,何庆复,王华胜,等. 基于STFT的振动信号解调方法及其在轴承故障检测中的应用[J].振动与冲击,2008, 27(2): 82-86.
   HU Xiao-yi, HE Qing-fu, WANG Hua-sheng, et al. Vibration signal demodulation method based on STFT and its application in rolling bearing fault detections[J]. Journal of Vibration and Shock, 2008,27(2):82-86.
[5] 张建伟.基于泄流激励的水工结构动力学反问题研究[D].天津:天津大学,2008.
[6] Dohono D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika , 1994, 81(3):425-455.
[7] 唐进元,陈维涛,陈思雨,等.一种新的小波阈值函数及其在振动信号去噪分析中的应用[J].振动与冲击, 2009, 28(7): 118-121.
   TANG Jin-yuan, CHEN Wei-tao, CHEN Si-yu, et al. Wavelet-based vibration signal denoising with a new adaptive thresholding function [J]. Journal of Vibration and Shock, 2009, 28(7):118-121.
[8] Mallat S. A theory formultire solution signal decomposition: the wavelet representation[J]. IEEE Trans on PAMI, 1989, 11(7):674-693.
[9] Huang N E, Shen Z,Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London, Series A:Mathematical, Physical and Engineering Sciences,1998,454(3):903-995.
[10] 白春华,周宣赤,林大超,等.消除EMD端点效应的PSO- SVM方法研究[J].系统工程理论与实践,2013,33(5): 1298-1306.
    BAI Chun-hua, ZHOU Xuan-chi, LIN Da-chao, et al. PSO-SVM method based on elimination of end effects in EMD[J].Systems Engineering-theory and Practice, 2013, 33(5):1298-1306.
[11] 薛年喜. Matlab在数字信号处理中的应用(2版)[M].北京:清华大学出版社,2008.
[12] Donohon D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory,1995,41(3):613-627.
[13] 张吉先, 钟秋海, 戴亚平.小波门限消噪法应用中分解层数及阈值的确定[J]. 中国电机工程学报, 2004, 24(2): 118-122.
   ZHANG Ji-xian, ZHONG Qiu-hai, DAI Ya-ping. The determination of the threshold and the decomposition order in threshold de-noising method based on wavelet thrasform [J]. Proceedings of the CSEE, 2004, 24(2): 118-122.
[14] 钟建军,宋健,由长喜,等.基于信噪比评价的阈值优选小波去噪法[J]. 清华大学学报:自然科学版,2014,54(2): 259-263.
    ZHONG Jian-jun, SONG Jian, YOU Chang-xi, et al. Wavelet de-noising method with threshold selection rules based on SNR evaluations[J]. Journal of Tsinghua University: Science and Technology,2014,54(2):259-263.

PDF(2701 KB)

Accesses

Citation

Detail

段落导航
相关文章

/