为减小冰箱振动、降低噪声,利用Pro/Engineer软件分别建立冰箱制冷剂管道内部气柱及管道三维实体模型,用有限元分析软件ANSYS分析模态,获得气柱及管道固有频率。气柱固有频率与压缩机激发频率相差较大不会产生共振,而管道固有频率在共振区内会产生共振。在制冷剂管道材料不变条件下分析不同管道长度、弯管圆角半径及固定支撑位置对冰箱振动特性影响。结果表明,减小制冷剂管道长度会增大固有频率并逐渐远离共振区,从而避免管道共振;增加制冷剂管道弯管圆角半径,其固有频率略有增大,一阶固有频率仍在共振区内导致管道共振;在制冷剂管道不同位置增加固定支撑,能有效提高管道固有频率,使其远离共振区,且存在最佳安装位置。
Abstract
In order to reduce the vibration and noise of a refrigerator, geometric models of the refrigerant pipe and the gas column in the pipe were created by Pro/Engineer software, and natural frequencies of the pipe and the gas column were obtained by the modal analysis based on ANSYS software. It is founded that gas column resonance could not occur with large differences between compressor excitation frequency and the gas column natural frequency, but pipe resonance exists with the pipe natural frequency in the resonance zone. For the problem of the pipe resonance, the vibration characteristics of the pipe with different length, fillet radius and support location are analyzed with the same pipe material. The model analysis results show that, the pipe natural frequency increases continuously and gets far away gradually from the resonance zone with the decrease of refrigerant pipe length. The pipe natural frequency is slightly getting larger with the increase in fillet radius, but the pipe resonance occurs with the first order natural frequency still in the resonance zone. The pipe natural frequency improves effectively and gets far away from the resonance zone by adding supports in different locations, and a best location exists.
关键词
冰箱 /
制冷剂管道 /
振动 /
模态分析 /
固有频率
{{custom_keyword}} /
Key words
refrigerator /
refrigerant pipe /
vibration /
modal analysis /
natural frequency
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GB/T 19606-2004,家用和类似用途电器噪声限值[S].
[2] Gue F, Cheong C, Kim T. Development of low-noise axial cooling fans in a household refrigerator[J]. Journal of Mechanical Science and Technology, 2011, 25(12): 2995-3004.
[3] Seo J Y, Kim W J, Won J S. Design and application of a perforated panel system to a household refrigerator for cooling fan noise reduction[J]. Journal of Mechanical Engineering Science, 2012, 226(3): 785-797.
[4] 褚志刚,蒋忠翰,周亚男,等. 冰箱风扇质量在线检测系统设计[J]. 振动与冲击, 2012, 31(18): 96-99.
CHU Zhi-gang, JIANG Zhong-han, ZHOU Ya-nan, et al. Design of an online detection system for vibration quality of refrigerator fans[J]. Journal of Vibration and Shock, 2012, 31(18): 96-99.
[5] 陈建良,金涛,孟晓宏,等. 冰箱压缩机壳体噪声辐射数值分析[J]. 浙江大学学报:工学版, 2007, 41(5): 794-798.
CHEN Jiang-liang, JING Tao, MENG Xiao-hong, et al. Numerical analysis of noise radiation from refrigerator compressor shell[J]. Journal of Zhejiang University: Engineering Science, 2007, 41(5): 794-798.
[6] 仲崇明,万泉,蒋伟康. 往复式压缩机振动的有限元数值分析与实验研究[J]. 振动与冲击, 2011, 30(5): 156-160.
ZHONG Chong-ming, WAN Quan, JIANG Wei-kang. Numerical analysis and tests for vibration response of a reciprocating compressor[J]. Journal of Vibration and Shock, 2011, 30(5): 156-160.
[7] 郭维,刘斌,冯涛. 冰箱压缩机机壳实验模态分析[J]. 噪声与振动控制, 2010 (3): 67-70.
GUO Wei, LIU Bin, FENG Tao. Experimental modal analysis of a refrigeration compressor’s shell[J]. Vibration and Noise Control, 2010(3): 67-70.
[8] 赵科,金涛,童水光,等. 冰箱用动磁式直线压缩机的动态特性仿真[J]. 浙江大学学报:工学版, 2009, 43(1): 138-142.
ZHAO Ke, JIN Tao, TONG Shui-guang, et al. Simulation of dynamic characteristics of moving magnet linear compressor for refrigerator[J]. Journal of Zhejiang University: Engineering Science, 2009, 43(1): 138-142.
[9] Kim H, Cho M G, Park J, et al. Prediction of gas pulsation of an industrial compressor[J]. Journal of Central South University, 2013, 20(10): 2735-2740.
[10] Lee S H, Ryu S M, Jeong W B. Vibration analysis of compressor piping system with fluid pulsation[J]. Journal of Mechanical Science and Technology, 2010, 26(12): 3903- 3909.
[11] 刘益才,曹立宏,杨智辉,等. 冰箱毛细管出口气液两相流理论[J]. 中南大学学报:自然科学版, 2007, 38(3): 450-453.
LIU Yi-cai, CAO Li-hong, YANG Zhi-hui, et al. Theoretical research on gas-liquid two-phase flow at outlet of refrigerator capillary[J]. Journal of Central South University: Science and Technology, 2007, 38(3): 450-453.
[12] Han H S, Jeong W B, Kim M S, et al. Reduction of the refrigerant-induced noise from the evaporator-inlet pipe in a refrigerator[J]. International Journal of Refrigerator, 2010, 33(7): 1478-1488.
[13] 李春银,王树林. 汽车空调旋叶式压缩机排气阀片的振动特性[J]. 振动与冲击, 2014, 33(8): 186-191.
LI Chun-yin, WANG Shu-lin. Vibration behavior of a discharge valve for vane compressor of a car air conditioner[J]. Journal of Vibration and Shock, 2014, 33(8): 186-191.
[14] 徐斌,冯全科,余小玲. 压缩机复杂管路压力脉动即管道振动研究[J]. 核动力工程, 2008, 29(4): 79-83.
XU Bin, FENG Quan-ke, YU Xiao-ling. Study on pressure
pulsation and piping vibration of complex piping of reciprocating compressor[J]. Nuclear Power Engineering, 2008, 29(4): 79-83.
[15] 杨国安. 机械振动基础[M]. 北京:中国石化出版社, 2012.
[16] 盛美萍,王敏庆,孙进才. 噪声与振动控制技术基础[M].北京:科学出版社, 2007.
[17] 舒歌群,高文志,刘月辉. 动力机械振动与噪声[M]. 天津:天津大学出版社, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}