多股簧系统动态响应等效线性化分析

赵 昱1,2,王时龙1,2,周 杰1,2,孙守利1,2,李 川3

振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 51-56.

PDF(1389 KB)
PDF(1389 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 51-56.
论文

多股簧系统动态响应等效线性化分析

  • 赵  昱1,2,王时龙1,2,周  杰1,2,孙守利1,2,李  川3
作者信息 +

Equivalent linearization analysis of the dynamic response of systems with stranded wire helical springs

  • ZHAO Yu1,2,WANG Shi-long1,2,ZHOU Jie1,2,SUN Shou-li1,2,LI Chuan3
Author information +
文章历史 +

摘要

分析归一化Bouc-Wen模型描述的滞迟阻尼能量损耗,建立该模型极限环在任意变形幅值下能量损耗计算公式及快速计算方法,提出多股簧系统频率响应特性的等效线性化分析方法并用数值仿真进行验证。结果表明,等效线性化分析与数值仿真结果一致,且计算速度远高于数值仿真。该方法可显著提高多股簧系统设计效率,对工程中大量具有近似线性系统响应特性的多股簧系统设计有实际意义。

Abstract

The energy dissipation of the hysteretic damping that is described by the normalized Bouc-Wen model is studied. An equation for calculating the energy dissipation with arbitrary deformation amplitude is established along with a fast evaluation approach. On the basis of the equation, the equivalent linearization analysis method for the dynamic response of systems with stranded wire helical springs is proposed. Numeric simulations are carried out to verify the proposed method. The results obtained by the proposed method coincide with those obtained by the numerical method while the proposed method is much more efficient than the numerical method. The equivalent linearization method is able to improve the efficiency of the designing of systems with stranded wire helical springs significantly; therefore, it is of practical value for the designing of many practical systems which have approximate linear responses.
 

关键词

多股簧 / Bouc-Wen模型 / 能量损耗 / 等效线性化

Key words

stranded wire helical spring / Bouc-Wen model / energy dissipation / equivalent linearization

引用本文

导出引用
赵 昱1,2,王时龙1,2,周 杰1,2,孙守利1,2,李 川3. 多股簧系统动态响应等效线性化分析[J]. 振动与冲击, 2015, 34(20): 51-56
ZHAO Yu1,2,WANG Shi-long1,2,ZHOU Jie1,2,SUN Shou-li1,2,LI Chuan3. Equivalent linearization analysis of the dynamic response of systems with stranded wire helical springs[J]. Journal of Vibration and Shock, 2015, 34(20): 51-56

参考文献

 [1] 王时龙,雷松,周杰,等. 两端并圈多股弹簧的冲击响应研究[J]. 振动与冲击,2011,30(3):64-68.
WANG Shi-long,LEI Song,ZHOU Jie,et al. Impact response of stranded wires helical springs with closed ends[J]. Journal of Vibration and Shock,2011,30(3):64-68.
 [2] Zhao Y,Wang S L,Zhou J,et al. Modeling and identification of the dynamic behavior of stranded wire helical springs[J]. Journal of Vibroengineering,2013, 15(1): 326-339.
 [3] Peng Y X,Wang S L,Zhou J,et al. Structural design, numerical simulation and control system of a machine tool for stranded wire helical springs[J]. Journal of Manufacturing Systems, 2012, 31(1SI): 34-41.
 [4] 王时龙,张明明,周杰,等. 振动状态下螺旋弹簧运动状态模型[J]. 机械工程学报,2012,48(1):78-83.
WANG Shi-long,ZHANG Ming-ming,ZHOU Jie,et al. Motion model of helical springs under vibrational condition[J]. Journal of Mechanical Engineering,2012,48(1):78-83.
 [5] Bouc R. Forced vibration of mechanical systems with hysteresis[C].// Djadkov S. Proceedings of the 4th Conference on Nonlinear Oscillations. Prague:Academia,1967: 315.
 [6] Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of the Engineering Mechanics Division, 1976, 102(2): 249-263.
 [7] 相恒波,方秦,王玮,等. 磁流变阻尼器抗爆隔震性能的数值模拟[J]. 振动与冲击,2007,26(11):106-111.
XIANG Heng-bo,FANG Qin,WANG We,et al. Numerical simulation on shock isolation of blast-resistant structure with magnetorheological dampers[J]. Journal of Vibration and Shock,2007,26(11):106-111.
 [8] Ni Y Q,Ko J M,Wong C W,et al. Modelling and identification of a wire-cable vibration isolator via a cyclic loading test part 1: experiments and model development[J]. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering,1999, 213(I3): 163-171.
 [9] Okuizumi N,Kimura K. Multiple time scale analysis of hysteretic systems subjected to harmonic excitation[J]. Journal of Sound and Vibration,2004, 272(3): 675-701.
[10] Wong C W,Ni Y Q,Lau S L. Steady-state oscillation of hysteretic differential model .1. Response analysis[J]. Journal of Engineering Mechanics-Asce,1994, 120(11): 2271-2298.
[11] Charalampakis A E,Koumousis V K. On the response and dissipated energy of bouc-wen hysteretic model[J]. Journal of Sound and Vibration. 2008, 309(3/5): 887-895.
[12] Ikhouane F, Manosa V, Rodellar J. Dynamic properties of the hysteretic bouc-wen model[J]. Systems & Control Letters, 2007, 56(3): 197-205.
[13] Olver F W. NIST handbook of mathematical functions[M]. Cambridge: Cambridge University Press, 2010:318.
[14] Braden B. The surveyor's area formula[J]. The College Mathematics Journal,1986, 17(4): 326-337.
[15] Burden R L,Faires J D. Numerical analysis[M]. Boston: Cengage Learning, 2010.

PDF(1389 KB)

Accesses

Citation

Detail

段落导航
相关文章

/