基于微分求积法的印刷运动薄膜动力稳定性分析

武吉梅,陈 媛,王 砚,武秋敏

振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 57-60.

PDF(1274 KB)
PDF(1274 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 57-60.
论文

基于微分求积法的印刷运动薄膜动力稳定性分析

  • 武吉梅,陈  媛,王  砚,武秋敏
作者信息 +

Study of kinetic stability for membrane based on differential quadrature method

  •  WU Ji-mei,CHEN Yuan,WANG Yan,WU Qiu-min
Author information +
文章历史 +

摘要

以印刷运动薄膜为研究对象进行横向振动特性及稳定性研究。建立抛物线型变密度运动薄膜计算模型。用微分求积法对运动薄膜横向振动方程进行离散,获得运动薄膜的复特征值方程。通过数值求解获得系统无量纲复频率与运动速度、密度系数、薄膜张力比的关系曲线,确定密度系数与临界速度的函数关系,分析密度系数、薄膜张力比对薄膜振动特性影响。结果表明,密度系数及张力比对薄膜稳定性有重要影响。
 

Abstract

In this paper, the printing moving membrane is studied and its transverse vibration characteristics and stability is analyzed. The calculation model of the moving membrane with parabolic variable density is established. The transverse vibration equation of printing membrane is discretized using the differential quadrature method, and the re-characteristic equation is obtained. The relation curves between the first three dimensionless complex frequencies with the dimensionless velocity, the density coefficient and the tension ratio are obtained by numerical calculation. The function relationship of the density coefficient and the critical speed is determined. The effects of the density coefficient and the tension ratio on the vibration characteristics of the membrane are discussed. The numerical results show that the density coefficient and the tension ratio have important impacts on the stability of moving membrane. And the study provides a theoretical basis for optimizing the structure of printing press and improving the work stability of the high-speed moving membrane. 
 

关键词

印刷运动薄膜;动力稳定性;微分求积法;抛物线变密度 

Key words

printing moving membrane / kinetic stability / differential quadrature method;parabolic variable density

引用本文

导出引用
武吉梅,陈 媛,王 砚,武秋敏. 基于微分求积法的印刷运动薄膜动力稳定性分析[J]. 振动与冲击, 2015, 34(20): 57-60
WU Ji-mei,CHEN Yuan,WANG Yan,WU Qiu-min . Study of kinetic stability for membrane based on differential quadrature method[J]. Journal of Vibration and Shock, 2015, 34(20): 57-60

参考文献

[1] 吴俊,陈立群. 轴向变速运动弦线的非线性振动的稳态响应及其稳定性[J]. 应用数学和力学,2004,25(9):917-925.
WU Jun, CHEN Li-qun. Steady-state responses and their stability of nonlinear vibration of an axially accelerating string [J]. Applied Mathematics and Mechanics,2004, 25(9): 917-925.
[2] 丁虎,陈力群. 轴向运动粘弹性梁横向非线性受迫振动[J]. 振动与冲击,2009,28(12):128-131.
DING Hu, CHEN Li-qun. Transverse non-linear forced vibration of axially moving viscoelastic beam [J]. Journal of Vibration and Shock,2009,28(12):128-131.
[3] 熊杨柳,张国策,丁虎,等. 粘弹性屈曲梁非线性内共振稳态周期响应[J]. 应用数学和力学,2014,35(11):1188 -1196.
XIONG Yang-liu, ZHANG Guo-ce, DING Hu,et al. Steady-state periodic responses of a viscoelastic buckled beam in nonlinear internal resonance[J]. Applied Mathematics and Mechanics, 2014, 35(11):1188-1196.
[4] 唐有绮,陈立群. 面内平动黏弹性板非线性振动的内-外联合共振[J]. 应用数学和力学,2013,34(5):480-487.
TANG You-qi, CHEN Li-qun. Internal-external combination resonance of nonlinear vibration of in-plane translating viscoelastic plates[J]. Applied Mathematics and Mechanics, 2013, 34(5): 480-487.
[5] 周银锋,王忠民. 轴向运动粘弹性板的横向振动特性[J]. 应用数学和力学,2007, 28(2): 191-199.
ZHOU Yin-feng, WANG Zhong-min. The transverse vibration characteristics of the axially moving viscoelastic plate[J]. Applied Mathematics and Mechanics,2007, 28(2): 191-199.
[6] 王冬梅,张伟,刘燕. 用微分求积法分析轴向加速粘弹性梁的非线性动力学行为[J]. 动力学与控制学报,2013, 11(1):41-45.
WANG Dong-mei,ZHANGWei,LIU Yan. Analysis on nonlinear dynamics of an axially accelerating viscoelastic beam using DQM [J]. Journal of Dynamics and Control, 2013, 11(1): 42-45.
[7] Shin C, Chung J, Kim W. Dynamic characteristics of the out-of-plane vibration for an axially moving membrane [J].Journal of Sound and Vibration, 2005,286:1019-1031.
[8] Kulachenko A, Gradin P, Koivurova H. Modeling the dynamical behaviour of a paper web part I [J]. Computers and Structures, 2007, 85(1): 131-147.
[9] Kulachenko A, Gradin P, Koivurova H. Modeling the dynamical behaviour of a paper web part II[J]. Computers and Structures, 2007, 85(2): 148-157.
[10] 赵凤群,王忠民. 运动矩形薄膜的非线性振动分析[J]. 机械科学与技术,2010,29(6):768-771.
ZHAO Feng-qun,WANG Zhong-min. Nonlinear vibration analysis of a moving rectangular membrane[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(6): 768-771.
[11] Wu Ji-mei, Wu Qiu-min, Ma Li-e, et al. Parameter vibration and dynamic stability of the printing paper web with variable speed [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2010, 29 (4): 281-291.
[12] Nguyen Q C, Hong K S. Stabilization of an axially moving web via regulation of axial velocity[J]. Journal of Sound and Vibration, 2011, 330(20): 4676-4688.
[13] Nguyen Q C, Hong K S. Transverse vibration control of axially moving membranes by regulation of axial velocity [J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1124-1131.
[14] Ma Li-e, Wu Ji-mei, Mei Xue-song,et al. Active vibration control of moving wed with varying density[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2013, 32(4): 323-334.
[15] Wu Ji-mei, Lei Wen-jiao, Wu Qiu-min,et al. Transverse vibration characteristics and stability of a moving membrane with elastic supports[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2014, 33(1): 65-78.
[16] 王永亮. 微分求积法和微分求积单元法-原理与应用[D]. 南京:南京航空航天大学,2001.
[17] Timoshenko S P, Young D H, Weaver W. Vibration problems in engineering[M]. John Wiley & Sons, Inc., 1974.

PDF(1274 KB)

Accesses

Citation

Detail

段落导航
相关文章

/