参数激励非线性振动时滞反馈最优化控制

刘灿昌,岳书常,许英姿,沈玉凤,任传波,刘 露,荆 栋

振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 6-9.

PDF(1036 KB)
PDF(1036 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 6-9.
论文

参数激励非线性振动时滞反馈最优化控制

  • 刘灿昌,岳书常,许英姿,沈玉凤,任传波,刘  露,荆  栋
作者信息 +

Optimal control of parametric excitated nonlinearvibration system with delayed linear and nonlinear feedback controllers

  • LIU Can-chang,YUE Shu-chang,XU Ying-zi,SHEN Yu-feng,REN Chuan-bo,LIU Lu,JING Dong
Author information +
文章历史 +

摘要

研究含时滞的线性、非线性复合时滞反馈控制Duffing-Van der Pol振子主参数共振响应最优化控制参数确定。基于弱非线性、弱反馈控制、弱参数激励及小阻尼假设,据平均法获得稳态响应振幅、相位平均方程。通过非线性振动能量比值定义衰减率。以衰减率为振动控制参数优化目标,以非线性振动系统振动、最值、最优时滞为约束条件,利用最优化方法计算获得最佳线性、非线性反馈控制参数。

Abstract

The determination of optimal control parameters of resonant response is studied for Duffing-Van der Pol oscillator with the delayed linear and nonlinear feedback controllers. For the weak nonlinearity, weak feedback control, small damping, and soft excitation, the average equations of the amplitude and phase of the stable vibration is obtained. The regions of the feedback gains for stable vibration of the nonlinear vibration system are obtained by using the stable conditions of eigenvalue equation. The nonlinear vibration energy attenuation ratio is defined by taking the proportion of square of the vibration peak of primary resonance for the suspension system with and without control. Taking the energy attenuation ratio as objective function, the stable conditions and the optimal delay as constraint conditions, the optimal feedback control gains can be worked out by using optimal method. It is found that an optimal feedback gain can lead to an optimal control performance.

关键词

非线性振动 / 控制 / 时滞 / 参数激励

Key words

Nonlinear vibration / control / time delay / parametric excitation

引用本文

导出引用
刘灿昌,岳书常,许英姿,沈玉凤,任传波,刘 露,荆 栋. 参数激励非线性振动时滞反馈最优化控制[J]. 振动与冲击, 2015, 34(20): 6-9
LIU Can-chang,YUE Shu-chang,XU Ying-zi,SHEN Yu-feng,REN Chuan-bo,LIU Lu,JING Dong. Optimal control of parametric excitated nonlinearvibration system with delayed linear and nonlinear feedback controllers[J]. Journal of Vibration and Shock, 2015, 34(20): 6-9

参考文献

[1] 彭解华,唐驾时,于德介,等. Van der pol-Duffing系统非共振Hopf分叉[J].国防科技大学学报,2001,23(2):107- 110.
PENG Jie-hua,TANG Jia-shi,YU De-jie,et al.Nonresonant hopf bifurcation of Van der Pol-Duffing sytem[J]. Journal of National University of Defense Technology,2001,23 (2): 107-110.
[2] 许磊,陆明万,曹庆杰. Van der Pol-Duffing方程非线性动力学分叉特性研究[J].应用力学学报,2002,19(4):130- 133.
XU Lei,LU Ming-wan,CAO Qing-jie.Nonlinear dynamical bifurcation analysis of Van der Pol-Duffing equation[J]. Chinese Journal of Applied Mechanics, 2002,19(4):130- 133.
[3] 甘春标,陆启韶,黄克累. 耦合Duffing-Van der Pol振子的强共振分叉解[J]. 应用数学和力学,1999,20(1):63-70.
GAN Chun-biao, LU Qi-shao, HUANG Ke-lei. Strongly resonant bifurcations of nonlinearly coupled Van der Pol-Duffing oscillator[J]. Applied Mathematics and Mechanics, 1999, 20 (1): 63-70.
[4] 陈予恕,徐鉴. Van der Pol-Duffing-Mathieu型系统主参数共振分岔解的普适分类[J]. 中国科学(A辑),1995,25(12): 1287-1297.
CHEN Yu-shu, XU Jian. Science in China, Ser.(A),1995,
25 (12) : 1287-1297.
[5] 黄志龙,孙志锋. 谐和激励下强非线性杜芬-范德波振子的响应[J]. 浙江大学学报:工学版,2005,39(3):445-448.
HUANG Zhi-long,SUN Zhi-feng. Responses of Duffing- van der Pol oscillator with strong nonlinearity subject to harmonic excitation[J]. Journal of Zhejiang University: Engineering Science, 2005, 39 (3) : 445-448.
[6] 褚衍东,李险峰,张建刚. Van der Pol -Duffing 耦合系统的分岔与混沌控制[J]. 江南大学学报:自然科学版,2007, 6(1):119-123.
CHU Yan-dong,LI Xian-feng,ZHANG Jian-gang.Chaos controlling and bifurcation of Van der Pol-Duffing system [J]. Journal of Southern Yangtze University:Natural Science Edition, 2007, 6 (1): 119-123.
[7] Attilio M. Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation[J]. Nonlinear Dynamics, 1998, 15 (4) : 329-343.
[8] Xu J, Chung K W. Effects of time delayed position feedback on a Van der Pol-Duffing oscillator[J]. Physica D: Nonlinear Phenomena, 2003, 180 (1/2) : 17-39.
[9] Hu H Y, Wang Z H. Stability analysis of damped SDOF systems with to time delays in state feedback[J]. Journal of Sound and Vibration,1998,214(2):213-225.
[10]Wang Z H, Hu H Y. Delay-independent stability of retarded dynamic systems of multiple degrees of freedom[J]. Journal of Sound and Vibration,1999,226(1):57-71.
[11]王在华,李俊余. 时滞状态正反馈在振动控制中的新特征[J].力学学报,2010,42(5):933-942.
WANG Zai-hua,LI Jun-yu. New features of the time- delayed positive feedback control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010,42(5): 933-942.
[12]蔡国平,陈龙祥. 时滞反馈控制的若干问题[J].力学进展,2013,43(1):21-28.
CAI Guo-ping,CHEN Long-xiang. Some problems of the delayed feedback control[J]. Advances of Mechanics, 2013, 43(1):21-28.
[13]赵艳影,徐鉴. 时滞非线性动力吸振器的减振机理[J]. 力学学报,2008,40(1):98-106.
ZHAO Yan-ying, XU Jian. Mechanism analysis of the nonlinear vibration of absorbers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008,40(1):98-106.
[14]赵艳影,徐鉴. 利用时滞反馈控制自参数振动系统的振动[J]. 力学学报,2011,43(5):894-903.
ZHAO Yan-ying,XU Jian. Using the delayed feedback to control the vibration of the auto-parametric dynamical systems[J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(5):894-903.
[15]周加喜,徐道临,李盈利,等. 基于最优时延反馈控制的主-被动非线性隔振方法研究[J]. 振动工程学报, 2011,24(6): 639-645.
ZHOU Jia-xi,XU Dao-lin,LI Ying-li,et al.An active-passive nonlinear vibration isolation method based on optimal time-delay feedback control[J]. Journal of Vibration Engineering, 2011,24(6):639-645.
[16] Tsuda Y, Tamura H, Sueoka A, et al. Chaotic behaviour of a nonlinear vibrating system with a retarded argument[J]. JSME International Journal, Ser. 3, 1992, 35 (2) : 259-267.
[17] Li X Y, Ji J C, Hansen C H, et al. The response of a Duffing-van der Pol oscillator under delayed feedback control[J]. Journal of Sound and Vibration,2006, 291: 644- 655.
[18]李欣业,陈予恕,吴志强,等. 参数激励Duffing-Van der Pol 振子的动力学响应及反馈控制[J]. 应用数学和力学,2006,27(12):1387-1396.
LI Xin-ye,CHEN Yu-shu,WU Zhi-qiang,et al.Response of a parametrically excited Duffing-Van der Pol oscillator with delayed feedback[J]. Applied Mathematics and Mechanics,2006, 27(12) : 1387-1396.
[19]杨平. Van der Pol-Duffing 系统共振双Hopf分岔[J]. 淮海工学院学报:自然科学版,2008,17(2):42-62.
YANG Ping.Resonant double hopf bifurcation of Van der Pol-Duffing system[J]. Journal of Huaihai Institute of Technology:Natural Science Edition,2008,17(2):42-62.
[20] Nayfeh A H, Chin C, Nayfeh S A. Nonlinear normal modes of a cantilever beam[J]. Journal of Vibration and Acoustics, 1995, 117(4) : 477-481.
[21] Nayfeh A H. Perturbation methods[M]. NewYork: Wiley, 1973.

PDF(1036 KB)

Accesses

Citation

Detail

段落导航
相关文章

/