基于二维线弹性理论,建立Winkler-Pasternak弹性地基上功能梯度(FGM)梁自由振动控制微分方程。假设材料物性沿梁厚度方向按幂律分布,采用微分求积法(DQM)数值求解4种不同边界FGM梁自由振动无量纲频率特性。将计算结果与Winkler-Pasternak弹性地基梁对比表明,该分析方法对弹性地基梁自由振动研究行之有效。考虑边界条件、梯度指数、跨厚比、地基系数对FGM梁自振频率影响。
Abstract
Based on the two-dimension theory of linear elasticity, the free vibration differential equations for FGM beams resting on Winkler-Pasternak elastic foundations are derived. The material properties change continuously through the thickness of the beam and can vary according to power law distributions. Using differential quadrature method, the dimensionless frequencies of free vibration of FGM beams under four different boundary conditions are investigated. The formulations in this paper are validated by comparing the results with those available in the literature for homogeneous beams on Winkler-Pasternak elastic foundations. The influence of the boundary conditions, material graded index, length-to-thickness ratio and elastic coefficients of foundations on the non-dimensional frequency parameter of the FGM beans are considered.
关键词
Winkler-Pasternak弹性地基 /
FGM梁 /
自由振动 /
无量纲频率 /
微分求积法
{{custom_keyword}} /
Key words
Winkler-Pasternak elastic foundations /
FGM beams /
free vibration /
dimensionless frequency /
DQM
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lee S Y, Kes H Y. Free vibrations of non-uniform beams resting on two-parameter elastic foundation with general elastic end restraints[J]. Computers. Structures, 1990,34: 421-429.
[2] Wang C M, Lam K Y, He X Q. Exact solutions for Timoshenko beams on elastic foundations using Green's functions [J]. Mechanics of Structures and Machines, 1998, 26(1):101-113.
[3] Ho S H, Chen C K. Analysis of general elastically end restrained non-uniform beams using differential transform [J]. Applied. Mathematic Modelling, 1998, 22(4/5), 219-234.
[4] De Rosa M A, Maurizi M J. The influence of concentrated masses and pasternak soil on the free vibrations of Euler beams-exact solution[J]. Journal of Sound and Vibration, 1998, 212(4):573-581.
[5] Chen W Q, Lu C F, Bian Z G. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation[J]. Applied Mathematical Modelling, 2004, 28(10): 877-890.
[6] Ding H J, Huang D J, Chen W Q. Elasticity solutions for plane anisotropic functionally graded beams[J]. International Journal of Solids and Structures, 2007, 44(1):176-196.
[7] Ying J, Lu C F, Chen W Q. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations[J].Composite Structures, 2008, 84(3): 209-219.
[8] Alshobagy A E, Eltaher M A,Mahmoud F F. Free vibration characteristics of a functionally graded beam by finite element method[J]. Applied Mathematical Modelling, 2011, 35(1):412-425.
[9] Thai H T, Vo T P. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories[J]. International Journal of Mechanical Sciences, 2012, 62(1):57-66.
[10] 蒲育, 滕兆春, 房晓林. 圆环板面内自由振动的DQM求解[J]. 振动与冲击, 2013, 32(24): 152-156.
PU Yu, TENG Zhao-chun, FANG Xiao-lin. In-plane free vibration of circular annular plates with differential quadrature method[J]. Journal of Vibration and Shock, 2013, 32(24): 152-156.
[11] Bert C W, Malik M. Differential quadrature method in computational mechanics[J].Appl. Mech. Rev.,1996,49:1- 27.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}