滑动轴承-转子系统Riccati-Newmark加速度传递矩阵法

毛文贵1,2,韩 旭1,刘桂萍1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 80-84.

PDF(1601 KB)
PDF(1601 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (20) : 80-84.
论文

滑动轴承-转子系统Riccati-Newmark加速度传递矩阵法

  • 毛文贵1,2,韩  旭1,刘桂萍1
作者信息 +

Riccati-Newmark transfer matri-acceleration formulation integration method for sliding bearings and rotor system

  • MAO Wen-gui1, 2,HAN Xu1,LIU Gui-ping1
Author information +
文章历史 +

摘要

为克服传递矩阵法数值不稳定及非线性瞬态响应分析中滑动轴承矩阵建立困难问题,提出Riccati-Newmark加速度传递矩阵法。借助Newmark加速度法建立传递矩阵,采用Taylor级数预估滑动轴承轴心下一时刻位移、速度建立滑动轴承矩阵;据边界条件用Riccati传递矩阵法求滑动轴承-转子系统非线性瞬态响应,提高数值稳定性。以单圆盘转子系统为例,与传统轴颈下一时刻位移、速度近似线性扰动处理的瞬态响应对比分析,验证此方法的有效性;讨论不同转速下线性、非线性油膜力的瞬态轨迹。

Abstract

In order to eliminate the numerical instability of transfer matrix  method  and  building transfer matrix of nonlinear elements( bearings), This paper extends the Riccati  transfer matrix  method to the transient analysis of nonlinear rotor-bearing systems,in which, firstly  the  transfer matrix is obtained with the aid of the Newmark acceleration formulation,secondly, the deflections and velocities of the stations containing nonlinear element (bearings) are predicted by Taylor series,finally, the deflections,velocities and accelerations of all stations are solved by Riccati-Newmark Transfer Matri-Acceleration Formulation Integration Method according to the boundary conditions. An example is given, compared with transient analysis considering linear perturbation and linear oil film force, the effectiveness of proposed method is verified.

关键词

非线性转子系统 / 瞬态响应 / Newmark加速度法 / Riccati传递矩阵法

Key words

nonlinear rotor systems / transient response / Newmark acceleration method / riccati transfer matrix method

引用本文

导出引用
毛文贵1,2,韩 旭1,刘桂萍1. 滑动轴承-转子系统Riccati-Newmark加速度传递矩阵法[J]. 振动与冲击, 2015, 34(20): 80-84
MAO Wen-gui1, 2,HAN Xu1,LIU Gui-ping1 . Riccati-Newmark transfer matri-acceleration formulation integration method for sliding bearings and rotor system[J]. Journal of Vibration and Shock, 2015, 34(20): 80-84

参考文献

[1] 何成兵,顾煜炯.增量传递矩阵法及其在轴系弯扭耦合振动中的应用[J]. 振动工程学报,2006,19(2):119-226.
HE Cheng-bing,GU Yu-jiong.Increment transfer matrix
method and its application in the coupled flexural and
torsional vibrations analysis[J]. Journal of Vibration
Engineering, 2006, 19(2):119-226.
[2] 高浩鹏,黄映云,刘鹏.引入传递矩阵法的复杂多体系统连接件建模方法研究[J].振动与冲击,2012,31(6):52-55.
GAO Hao-peng,HUANG Ying-yun,LIU Peng. Modeling of linkers in complex multibody system with transfer matrix method[J].Journal of Vibration and Shock,2012,31(6):52- 55.
[3] 李苹,窦海波,王正.水轮发电机组主轴系统的建模及非线性瞬态响应[J].清华大学学报:自然科学版,1998,38(6):123-128.
LI Ping,DOU Hai-bo,WANG Zheng. Modeling for rotor- bearing system of hydroelectric machines and its non-linear transient response[J].Journal of Tsinghua University: Sci. &Tech.,1998,38(6):123-128.
[4] Liu H P, Xu H, Ellison P J,et al.Application of computa- tional fluid dynamica and fluid-structure interaction method to the lubrication study of a rotor-bearing system[J].Tribol  Letters,2012,38(3):325-336.
[5] Li qiang,Yu gui-chang,Liu shu-lian. Application of computational fluid dynamics and fluid structure interaction techniques for calculating the 3D transient flow of journal bearings coupled with rotor systems[J].Chinese Journal of Mechanical Engineering,2013,25(5):926-931.
[6] 顾致平,刘永寿.非线性转子系统中的传递矩阵技术[M].北京:科学出版社, 2010.
[7]王正. Riccati传递矩阵法的奇点及其消除方法[J]. 振动与冲击, 1987,6(2): 74-78.
WANG Zhen. Singular point and elimination method of riccati transfer matrix method[J]. Journal of Vibration and Shock, 1987,6 (2):74-78.
[8] 徐斌. Matlab有限元结构动力学分析与工程应用[M].北京:清华大学出版社, 2010.
[9] 闻邦椿,顾家柳,夏松波,等. 高等转子动力学[M]. 北京:机械工业出版社, 2000.
[10] 毛文贵,刘桂萍,韩旭,等.一种高效的电主轴系统复频率计算方法[J].振动与冲击,2014,33(19):164-168.
MAO Wen-gui,LIU Gui-ping,HAN Xu,et al.An efficent method for calculating complex frequency of a motorized spindle[J].Journal of Vibration and Shock, 2014, 33(19): 164-168.

PDF(1601 KB)

Accesses

Citation

Detail

段落导航
相关文章

/