神经信息编码研究的现状与进展

朱雅婷 王如彬 倪力 王梓印

振动与冲击 ›› 2015, Vol. 34 ›› Issue (21) : 1-9.

PDF(953 KB)
PDF(953 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (21) : 1-9.
论文

神经信息编码研究的现状与进展

  • 朱雅婷  王如彬  倪力  王梓印
作者信息 +

The status and progress of neural information coding

  • Yating Zhu   Rubin Wang   Li Ni   Ziyin Wang
Author information +
文章历史 +

摘要

神经信息编码的研究有助于了解神经系统的工作机制。实验与理论的综合发展不断丰富着编码模式的种类,因此对编码现状进行分析探究是十分重要的。本文将着重阐述感受器中的编码、发放率编码与时间编码、群编码、能量编码。试图比较不同层次编码的动力学特征与各自的优缺点,从而评估它们的适用系统,找出适用范围广泛的有效的编码和解码的方法。这将对了解大脑的内部工作机制和人工智能的应用前景具有不可估量的作用和巨大的影响。

Abstract

The study of neural information coding helps to understand the working mechanisms of nervous systems. The comprehensive development of experiment and theory enlarges the types of coding modes, therefore it is important to explore the status of neural codes. This paper will focus on receptor coding, rate and temporal coding, population coding, and neural energy coding. The dynamic properties, advantages, and disadvantages of the codes from different levels are compared, which helps to evaluate their applicable systems and obtain a widely-used, effective method for coding and decoding. Studying the progress of neural information coding will play enormous impact on the comprehension of working mechanisms in the brain and the application prospects of artificial intelligence.
 

关键词

感受器编码 / 发放率编码 / 时间编码 / 群编码 / 神经能量编码

Key words

receptor coding / rate coding / temporal coding / population coding / neural energy coding

引用本文

导出引用
朱雅婷 王如彬 倪力 王梓印. 神经信息编码研究的现状与进展[J]. 振动与冲击, 2015, 34(21): 1-9
Yating Zhu Rubin Wang Li Ni Ziyin Wang . The status and progress of neural information coding[J]. Journal of Vibration and Shock, 2015, 34(21): 1-9

参考文献

[1] Brown EN, Kass RE, Mitra PP . Multiple neural spike train data analysis: state-of-the-art and future challenges [J]. Nature Neuroscience, 2004, 7 (5): 456–61 .
[2] Thomas R Insel, Nora D Landis, Ting-Kai Li, et al. Limits to growth: why neuroscience needs large-scale science [J]. Nature Neuroscience, 2004, 7(5): 426-427.
[3] Adam L. Jacobs, et al. Ruling out and ruling in neural codes [J]. PNAS, 2009,106(14): 5936-5941.
[4] Johnson DH, Ray W. Optimal stimulus coding by neural populations using rate codes [J].Journal of Computational Neuroscience, 2004, 16:129–138.
[5] Nirenberg S, Latham PE. Decoding neuronal spike trains: How important are correlations? [J]. PNAS, 2003, 100:7348–7353.
[6] Victor JD. Temporal aspects of neural coding in the retina and lateral geniculate [J]. Network, 1999, 10:R1–66.
[7] Ariel Rokem, Sebastian Watzl, Tim Gollisch, et al. Spike-Timing Precision Underlies the Coding Efficiency of Auditory Receptor Neurons [J]. J Neurophysiol, 2006 95: 2541–2552.
[8]王如彬,周轶,张志康. 具有延时作用的基底膜主动耦合模型[J]. 振动与冲击, 2011, 30(12), 49-53.
Rubin Wang,Yi Zhou, Zhikang Zhang, Coupling Model for Basilar Membrane with Delay Action[J],Journal of Vibration and Shock,2011, 30(12), 49-53.
[9] Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition[J]. Cell, 1991, 65:175–187.
[10] Malnic B, Hirono J, Sato T, et al. Combinatorial receptor codes for odors. Cell[J], 1999, 96:713–723.
[11] Kandel E., Schwartz J. Jessel T.M.. Principles of Neural Science (3rd ed.)[J]. Elsevier, 1991, ISBN 0444015620.
[12]Adrian ED, Zotterman Y. The impulses produced by sensory nerve endings: Part II: The response of a single end organ[J]. J Physiol (Lond.), 1926, 61: 151–171.
[13]Jiyong Hu, Rubin Wang. Responses of cutaneous mechanoreceptors within fingerpad to stimulus information for tactile softness sensation of materials[J]. Cognitive Neurodynamics, 2013, 7(5): 441-447.
[14] Hu, Jiyong, Yang Xudong, Ding Xin, et al. Probability of prickliness detection in a model of populations of fiber ends prickling human skin[J]. Fibers and Polymers, 2012, 13(1):79-86.
[15] Lennie P. The cost of cortical computation[J]. Curr Biol, 2003, 13:493-497.
[16] Roland S Johansson, Ingvars Birznieks. First spikes in ensembles of human tactile afferents code complex spatial fingertip events[J]. Nature Neuroscience, 2004, 7(2), 170-177.
[17] Michael R. DeWeese, Michael Wehr,Anthony M. Zador. Binary Spiking in Auditory Cortex[J], The Journal of Neuroscience, 2003, 23(21): 7940-7949.
[18] Butts DA, Weng C, Jin J, et al.. Temporal precision in the neural code and the timescales of natural vision[J]. Nature, 2007,  449 (7158): 92–95.
[19] L. M. Optican, B. J. Richmond. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis[J].  AJP - JN Physiol, 1987, 57(1): 162-178 .
[20] Thorpe S, Delorme A, Van Rullen R. Spike-based strategies for rapid processing[J]. Neural Network, 2001, 14:715-725.
[21] Peter Heil,First-spike latency of auditory neurons revisited[J],Current Opinion in Neurobiology, 2004, 14:461–467.
[22] Steven M. Chase, Eric D. Young. First-spike latency information in single neurons increases when referenced to population onset[J]. PNAS, 2007, 104(12): 5175–5180.
[23] Riccardo Storchi, Michael R. Bale, Gabriele E. M. Biella, et al. Comparison of latency and rate coding for the direction of whisker deflection in the subcortical somatosensory pathway[J]. J Neurophysiol, 2012, 108: 1810–1821.
[24] Wainrib Gilles, Michèle Thieullen, et al. Intrinsic variability of latency to first-spike[J]. Biological Cybernetics, 2010, 103 (1): 43–56.
[25] Rubin Wang, Zhikang Zhang. Phase Synchronization Motion and Neural Coding in Dynamic Transmission of Neural Information[J]. IEEE Transactions on Neural Networks, 2011, 22(7): 1097-1106.
[26] Wang Rubin, Zhang Zhikang, Tse Chi K, Qu Jingyi, Cao Jianting,Neural coding in networks of multi-populations of neural oscillators[J]. Mathematics and Computers in Simulation, 2012, 86: 52-66 (2012)
[27] Georgopoulos AP, Lurito JT, Petrides M, et al. Mental rotation of the neuronal population vector. Science, 1989, 243: 234-236.
[28] Jerome Feldman, Theneural binding problem(s)[J], Cogn Neurodyn, 2012, DOI 10.1007/s11571-012 -9219-8.
[29] Elbert T., Rockstroh B, Threshold regulation—a key to the understanding of the combined dynamics of EEG and event-related potentials[J]. Psychophysiol., 1987, 4:317–333.
[30] Fröhlich F., McCormick D. A.. Endogenous electric fields may guide neocortical network activity. Neuron, 2010, 67: 129–143.
[31] Juergen Fell, Nikolai Axmacher. The role of phase synchronization in memory processes[J]. Neuroscience, 2011, 12: 105-118.
[32] Fries P., Reynolds J. H., Rorie A. E., et al.. Modulation of oscillatory neuronal synchronization by selective visual attention[J]. Science , 2001, 291: 1560–1563.
[33] Womelsdorf T. et al. Modulation of neuronal interactions through neuronal synchronization[J]. Science, 2007, 316: 1609–1612.
[34] Jutras M. J., Fries P., Buffalo E. A.. Gamma-band synchronization in the macaque hippocampus and memory formation[J]. J. Neurosci. , 2009, 29: 12521–12531.
[35] Sanes J. N., Donoghue J. P.. Oscillations in local field potentials of the primate motor cortex during voluntary movement[J]. PNAS, 1993, 90: 4470–4474 .
[36] Lee D.. Coherent oscillations in neuronal activity of the supplementary motor area during a visuomotor task[J]. J. Neurosci., 2003, 23: 6798–6809 .
[37] Murthy V. N., Fetz E. E.. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys[J]. PNAS, 1992, 89: 5670–5674.
[38] Brovelli A. et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality[J]. PNAS, 2004, 101: 9849–9854.
[39] Courtemanche R., Fujii, N., Graybiel, A. M.. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys[J]. J. Neurosci., 2003, 23: 11741–11752.
[40] Levy, R., Hutchison, W. D., Lozano, A. M., et al. Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity[J]. J. Neurosci., 2002,  22: 2855–2861.
[41] Alfons Schnitzler, Joachim Gross. Normal and pathological oscillatory communication in the brain[J]. Neuroscience, 2005,  6:285-296.
[42] Brovelli, A. et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality[J]. PNAS, 2004, 101(26): 9849–9854.
[43] Jutras, M. J., Fries, P., Buffalo, E. A., Gamma-band synchronization in the macaque hippocampus and memory formation[J]. J. Neurosci., 2009, 29: 12521–12531.
[44] Martin Vinck, et al. Gamma-Phase Shifting in Awake Monkey Visual Cortex[J]. The Journal of Neuroscience, 2010, 30(4): 1250 –1257.
[45] Levy, R., Hutchison, W. D., Lozano, A. M., et al. Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity[J]. J. Neurosci., 2002, 22: 2855–2861.
[46] Kuhn, A. A. et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance[J]. Brain, 2004, 127: 735–746.
[47] Marsden J. F., Limousin-Dowsey P., Ashby P., et al. Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease[J]. Brain, 2001, 124: 378–388.
[48] Brown P. et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease[J]. J. Neurosci., 2001, 21: 1033–1038.
[49] Joerg F. Hipp, et al. Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception[J]. Neuron, 2011, 69: 387–396.
[50]Gross J., Kujala J., Hamalainen M., et al. Dynamic imaging of coherent sources: Studying neural interactions in the human brain[J]. Proc. Natl. Acad. Sci. USA, 2001, 98: 694–699.
[51] Lutzenberger W., Ripper B., Busse L..Dynamics of gamma-band activity during an audiospatial working memory task in humans[J]. J. Neurosci., 2002, 22: 5630–5638.
[52] Babiloni C. et al. Functional frontoparietal connectivity during short-term memory as revealed by high-resolution EEG coherence analysis[J] Behav. Neurosci., 2004, 118: 687–697.
[53] Tallon-Baudry C., Bertrand O., Fischer C..Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance[J]. J. Neurosci., 2001, 21: RC177.
[54] Axmacher N., Schmitz D. P., Wagner T., et al. Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory, a combined intracranial EEG and functional magnetic resonance imaging study[J]. J. Neurosci., 2008, 28: 7304–7312.
[55] Mormann F., Fell J., Axmacher N., et al. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task[J]. Hippocampus, 2005, 15: 890–900.
[56] Paul Sauseng, Wolfgang Klimesch, et al. Oscillatory Substrates of Visual Short-Term Memory Capacity[J]. Current Biology,  2009, 19: 1846–1852.
[57] Weigang Sun, Rubin Wang, Weixiang Wang , et al. Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays[J]. Cognitive Neurodynamics, 2010, 4(3): 225–231.
[58] Xia Shi, Qingyun Wang, Qishao Lu, Firing synchronization and temporal order in noisy neuronal networks[J]. Cognitive Neurodynamics, 2008, 2(3): 195–206.
[59] Enhua Shen, Rubin Wang. A spiking neuron model of theta phase Precession[J]. Lecture Notes in Computer Science, 2006, 4221: 214-223.
[60] Rubin Wang, Zhikang Zhang. Phase Synchronization Motion and Neural Coding in Dynamic Transmission of Neural Information[J]. IEEE Transactions on Neural Networks, 2011, 22(7): 1097-1106.
[61] Rubin Wang, Zhikang Zhang. Neural coding in networks of multi-populations of neural oscillators[J]. Mathematics and Computer in Simulations, 2012, (in press).
[62]Leonie Welberg, Oscillation Networking improves performance. Neuroscience, 2011, 12:121.
[63] Ai-Ling Lina, Peter T. Foxa, Jean Hardiesa, et al. Nonliner coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex[J]. PNAS, 2010, 107(18): 8447.
[64] Simon B. Laughlin, Terrence J., Sejnowski.. Communication in neural networks[J]. Science, 2003, 301: 1870.
[65] Shoichi Tayabe, Takahiro Sagawa, Masahito Ueda, et al., Experimental demonstration-energy conversion and validation of the generalized Jarzynski equality. Nature Physics., 2010, Published Online: 14.
[66] Rubin Wang, Zhikang Zhang. Mechanism on brain information processing: energy coding[J]. Applied Physical Letters, 2006, 89:123903.
[67] Rubin Wang, Zhikang Zhang. Energy coding in biological neural network[J]. Cognitive Neurodynamics, 2007, 1(3): 203-212.
[68] Rubin Wang, Zhikang Zhang, Chen Guanrong. Energy function and energy evolution on neural population[J]. IEEE Transactions on Neural Networks, 2008, 19(3): 535~538.
[69] Rubin Wang, Zhikang Zhang, Guanrong Chen. Energy coding and energy functions for local activities of brain[J]. Neurocomputing, 2009, 73(1-3): 139-150.
[70] Rubin Wang, Zhikang Zhang. Computation of neuronal energy based on information coding[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 779-786.
[71] Huettel S. A., Song, A. W., McCarthy, G.. Functional Magnetic Resonance Imaging (2ed.)[J].Massachusetts: Sinauer,  2009, ISBN 978-0-87893-286-3.
[72]Rubin Wang, Ziyin Wang, Can the representation of neural information be communicated by neuralenergy? (Submitted to CerebralCortex.2013)
[73]Wang R, Wang Z. Energy Distribution Property and Energy Coding of a Structural Neural Network[J]. Frontiers in Computational Neuroscience, 2014,  8: 14.
[74]Hongwen Zheng, Rubin Wang, Linkun Qiao. The molecular dynamics of neural metabolism during the action potential. Science China[J]. Technological Science, 2014, 5. 
[75] Rheinallt Parri, Vincenzo Crunelli. An astrocyte bridge from synapse to blood flow[J], Nature Neuroscience, 2003, 6(1).
[76]Sokoloff L.. The physiological and biochemical bases of functional brain imaging[J]. Cognitive Neurodynamics, 2008, 2: 1–5.
[77]Moore CI., Cao R. The Hemo-Neural Hypothesis: On The Role of Blood Flow in Information Processing[J]. Neurophysiol, 2008, 99:2035–2047.
[78]Claire Peppiatt, David Attwell. Feeding the brain[J]. Nature, 2004, 431(9).

PDF(953 KB)

Accesses

Citation

Detail

段落导航
相关文章

/