基于真实形状鸟体的撞击方向对鸟撞分析影响研究

张大海1,2,费庆国1,2,刘宏月1,2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 103-108.

PDF(2635 KB)
PDF(2635 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 103-108.
论文

基于真实形状鸟体的撞击方向对鸟撞分析影响研究

  • 张大海1,2,费庆国1,2,刘宏月1,2
作者信息 +

Study of the effect of bird strikes from various orientations based on a realistic bird

  • ZHANG Da-hai1, 2, FEI Qing-guo1, 2, LIU Hong-yue1, 2
Author information +
文章历史 +

摘要

鸟体形状及撞击方向对鸟撞分析有很大影响。真实鸟体形状复杂,不同鸟类外形、大小各异,因此研究中常采用简化的替代模型进行模拟,四种常见的鸟体替代模型为:球体、圆柱体、两端半球-中间圆柱体、椭球体。实际鸟撞事故中,鸟可能从头部、尾部、翼部及腹部等不同方向撞击飞机,所造成的影响也不尽相同。首先,建立真实形状鸟体撞击刚性靶有限元模型,研究不同撞击方向对鸟撞分析的影响;进一步进行四种简化的鸟体替代模型鸟撞分析,并与真实形状鸟体分析结果进行对比,研究鸟体替代模型对真实形状鸟体不同撞击方向替代的适用性。研究表明:1)不同撞击方向对鸟撞分析结果有较大影响,腹部冲击力极值最大,但冲击持续时间最短;头部和尾部冲击极值相对较小。2)腹部冲击鸟体动能衰减最快也最多,尾部和翼部次之,头部衰减最少。3)尾部撞击和两端半球-中间圆柱体撞击计算结果吻合较好;腹部撞击和椭球体长边侧撞击计算结果吻合较好;头部、翼部撞击和替代模型计算结果吻合度较差。

Abstract

Bird shape and strike orientation are two vitally important factors that can affect the accuracy of bird strike analysis. The realistic bird has a complex configuration and there are different bird types with different body shapes, so researchers have often used simple configurations to model the bird in bird strike event. The four substitute bird models most-frequently employed in the literature are: sphere, straight-ended cylinder, hemispherical-ended cylinder and ellipsoid. During a bird strike event, a bird can strike the airplane from its head, tail, abdomen or wings. Any of these orientations have different effects on the response of an airplane part. Firstly, a realistic bird model was established to study the effect of strike orientation. The results obtained by using the substitute bird models are compared in order to determine the best substitute bird witch can properly model the force exerted by real bird when striking from different orientations. It was concluded that the configuration of the bird has a big influence on the impact force; the impact force obtained by striking from the abdomen side is the largest and the shortest while the results obtained by striking from the head and tail sides are the least. Meanwhile, the kinetic energy loss of bird tends to be adequate and rapid by striking from the abdomen, wing and tail come second, head is the least. Besides, it was also found that for the tail side strike scenario, a hemispherical-ended cylinder shows the best results and for the abdomen side strike scenario, an ellipsoid striking from its long side can be the best substitute model, while for the head and wing side strike scenarios, no substitute models have a good agreement.

关键词

鸟撞 / 鸟体形状 / 真实鸟体模型 / 撞击方向 / 替代模型

引用本文

导出引用
张大海1,2,费庆国1,2,刘宏月1,2. 基于真实形状鸟体的撞击方向对鸟撞分析影响研究[J]. 振动与冲击, 2015, 34(22): 103-108
ZHANG Da-hai1, 2, FEI Qing-guo1, 2, LIU Hong-yue1, 2. Study of the effect of bird strikes from various orientations based on a realistic bird[J]. Journal of Vibration and Shock, 2015, 34(22): 103-108

参考文献

[1]. 刘军,李玉龙,郭伟国等.鸟体本构模型参数反演I:鸟撞平板试验研究[J].航空学报.2011, 32(5):802-811.
Liu Jun, Li Yulong, Guo Weiguo, et al. Parameters inversion on bird constitutive model part I: study on experiment of bird striking on plate [J]. Acta Aeronautica et Astronautica Sinica.2011, 32(5): 802-811.
[2]. Dolbeer Richard A, Wright Sandra E. Wildlife strikes to civil aircraft in the United States 1990-2007. FAA National Wildlife Strike Database, Serial Report Number 14, June, 2008.
[3]. 2011年度中国民航鸟击航空器事件分析报告. 中国民用航空局机场司,中国民航科学技术研究院.2012.
Bird strikes to civil aircraft in China (2011). Center of Aviation Safety Technology, CAAC, 2012.
[4]. 刘富,张嘉振,童明波等.2024-T3铝合金动力学实验及其平板鸟撞动态响应分析[J].振动与冲击.2014.33(4):113-118.
Liu Fu, Zhang Jiazhen, Tong Mingbo, et al. Dynamic tests and bird impact dynamic response analysis for a 2024-T3 aluminum alloy plate [J]. Journal of Vibration and Shock. 2014.33(4):113-118.
[5]. Richard B. The development of a substitute artificial bird by the International Bird Strike Research Group for use in aircraft component testing. International Bird Strike Committee. ISBC25/WP-IE3. Amsterdam, 2000.
[6]. 中华人民共和国国家军用标准.GJB 2464A-2007飞机透明件鸟撞试验方法[S].2007.
[7]. S.A. Meguid, R.H. Mao, T.Y Ng. FE analysis of geometry effects of an artificial bird striking an aero engine fan blade [J]. International Journal of Impact Engineering. 2008(35):487-497.
[8]. Mao R.H, Meguid S.A, Ng T.Y. Transient three dimensional finite element analysis of a bird striking a fan blade [J]. International Journal of Mechanics and Materials in Design, 2008, 4:79-96.
[9]. S. C. McCallum, C. Constantinou. The influence of bird-shape in bird-strike analysis[C]. 5th European LS-DYNA Users Conference.2005.
[10]. Stuart McCallum, Hirokazu Shoji, Hiroyuki Akiyama. Development of an advanced multi-material bird-strike model using the smoothed particle hydrodynamics method [J]. International Journal of Crashworthiness. 2013, 18(6): 579-596.
[11]. Lakshmi S. Nizampatnam. Models and Methods for bird strike load predictions [D].Wichita State University.2007.
[12]. Reza Hedayati, Saeed Ziaei-Rad. A new bird model and the effect of bird geometry in impacts from various orientatons [J]. Aerospace Science and Technology.2013(28):9-20.
[13]. Reza Hedayati, Mojtaba Sadighi, Mohammad Mohammadi-Aghdam. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies [J]. Aerospace Science and Technology. 2014(32): 260-266.
[14]. F. S. Wang, Z. F. Yue. Numerical simulation of damage and failure in aircraft windshield structure against bird strike [J].Materials and Desigh.2010, 31:687-695.
[15]. 王富生,李立州,王新军等.鸟体材料参数的一种反演方法[J]. 航空学报.2007, 28(2):344-347.
Wang F, Li L, Wang X, et al.  A Method to Identify Bird’s Material Parameters [J]. Acta Aeronautica et Astronautica Sinica. 2007, 28(2):344-347.
[16]. 杜龙.基于欧拉—拉格朗日方法的复合材料机翼前缘鸟撞模拟[J].振动与冲击.2012, 31(7):137-141.
Du L. Finite element analysis of bird striking on a composite wing leading edge based on eulerian-lagrangian method [J].Journal of Vibration and Shock.2012, 31(7):137-141.
[17]. Dar U A, Zhang W, Xu Y. FE Analysis of Dynamic Response of Aircraft Windshield against Bird Impact[J].International Journal of Aerospace Engineering,2013.
[18]. 林长亮,王益锋,王浩文等.直升机旋翼桨叶鸟撞动态响应计算[J].振动与冲击.2013, 32(10):62-68.
Lin Changliang. Wang Yifeng. Wang Haowen, et al. Computation of dynamic response of helicopter blade under bird impact [J].Journal of Vibration and Shock. 2013, 32(10):62-68.
[19]. Smojver. D. Ivancevic. Bird strike damage analysis in aircraft structure using Abaqus/Explict and coupled Eulerian Lagrangian approach [J].Composites Science and Technology.2011, 71:489-498.
[20]. Jun Liu, Yulong Li, Xiaosheng Gao. Bird strike on a flat plate: Experiments and numerical simulations [J].International Journal of Impact Engineering 2014, 70:21-37.
[21]. M.A. Lavoie, A. Gakwaya, M. Nejad Ensan, et al. Bird’s substitute tests results and evaluation of available numerical methods [J].International Journal of Impact Engineering. 2009,36:1276-1287.
[22]. Willows M, Driffill B. GARTEUR (Group for Aeronautical Research and Technology in Europe) Bird Strike Group, Round robin work package: Rigid wall phase1 and task 1, DERA Farnborough, Hants, 1999.

PDF(2635 KB)

945

Accesses

0

Citation

Detail

段落导航
相关文章

/