圆柱壳振动控制中的约束阻尼拓扑优化研究

窦松然,桂洪斌,李承豪,乔永亮

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 149-153.

PDF(1550 KB)
PDF(1550 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 149-153.
论文

圆柱壳振动控制中的约束阻尼拓扑优化研究

  • 窦松然,桂洪斌,李承豪,乔永亮
作者信息 +

Research of topological optimization for constrained damping in vibration control of cylindrical shell

  • DOU Song-ran,GUI Hong-bin,LI Cheng-hao,QIAO Yong-liang
Author information +
文章历史 +

摘要

对结构进行阻尼敷设可以有效地提高其减振效果。基于RAMP插值模型的密度法,以结构的模态损耗因子的倒数的最小化作为优化目标,以阻尼结构的体积作为约束条件,以约束阻尼单元的相对密度作为设计变量,建立约束阻尼结构的拓扑优化模型。并基于优化准则法推导了设计变量更新准则,结合有限元法,编写了约束阻尼材料的拓扑优化程序,对圆柱壳在振动控制中的约束阻尼结构进行了拓扑优化分析。分析结果表明,基于优化准则法的振动拓扑优化方法所需迭代次数少,可有效地减少结构的振动响应,验证了设计方法的有效性。

Abstract

Structures with damping have a better performance in reducing vibration. Based on density approach with RAMP interpolation model, the topologic model of constrained damping structure was studied with the minimum of reciprocal of modal loss factors as target function, the volume of damping structure as constraint condition, and the relative density of constrained damping element as design variable. The updating criterion of design variables was derived based on optimal criteria method. And the topologic optimization program was developed with finite element method. The topological optimization for constrained damping structure in vibration control of cylindrical shell was studied. The analysis shows that topologic optimization method with optimal criteria method needs less number of iteration and reduces the vibration response of structure effectively, which indicates the validity of the design approach.

关键词

拓扑优化 / RAMP插值 / 密度法 / 优化准则法 / 约束阻尼 / 有限元

Key words

topologic optimization / RAMP interpolation / density approach / optimal criteria method / constrained damping / finite element

引用本文

导出引用
窦松然,桂洪斌,李承豪,乔永亮. 圆柱壳振动控制中的约束阻尼拓扑优化研究[J]. 振动与冲击, 2015, 34(22): 149-153
DOU Song-ran,GUI Hong-bin,LI Cheng-hao,QIAO Yong-liang . Research of topological optimization for constrained damping in vibration control of cylindrical shell[J]. Journal of Vibration and Shock, 2015, 34(22): 149-153

参考文献

[1] 李以农, 谢熔炉, 王宜, 等. 约束阻尼结构拓扑优化设计的进化算法[J]. 重庆大学学报: 自然科学版, 2010, 33(8): 1-6.
LI Yi-nong, XIE Rong-lu, WANG Yi, et al. Topology optimization for constrained layer damping material in structures using ESO method[J]. Journal of Chongqing University: Natural Science Edition, 2010, 33(8): 1-6.
[2] Bieniek M P. Forced vibrations of cylindrical sandwich shells[J]. 2012..
[3] Rahmani O, Khalili S M R, Malekzadeh K. Free vibration response of composite sandwich cylindrical shell with flexible core[J]. Composite Structures, 2010, 92(5): 1269-1281.
[4] Mohammadi F, Sedaghati R. Linear and nonlinear vibration analysis of sandwich cylindrical shell with constrained viscoelastic core layer[J]. International Journal of Mechanical Sciences, 2012, 54(1): 156-171.
[5] 杨德庆, 柳拥军. 自由阻尼层结构阻尼材料配置优化的拓扑敏度法[J]. 振动工程学报, 2004, 16(4): 420-425.
YANG De-qing, LIU Yong-jun. Topological Sensitivity Method for the Optimal Placement of Unconstrained Damping Material in Structures[J]. Journal of Vibration Engineering, 2004, 16(4): 420-425.
[6] Zheng H, Cai C, Tan X M. Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams[J]. Computers & structures, 2004, 82(29): 2493-2507.
[7] Araujo A L, Madeira J F A, Mota Soares C M, et al. Optimal design for active damping in sandwich structures using the Direct MultiSearch method[J]. Composite Structures, 2013, 105: 29-34.
[8] 张志飞, 倪新帅, 徐中明, 等. 基于优化准则法的自由阻尼材料拓扑优化[J]. 振动与冲击, 2013, 32(14): 98-102.
ZHANG Zhi-fei, NI Xin-shuai, XU Zhong-ming, et al. Topologic optimization of a free damping material based on optimal criteria method[J]. Journal of vibration and shock, 2013, 32(14): 98-102.
[9] Cameron C J, Lind Nordgren E, Wennhage P, et al. On the balancing of structural and acoustic performance of a sandwich panel based on topology, property, and size optimization[J]. Journal of Sound and Vibration, 2014, 333(13): 2677-2698.
[10] Kumar N, Singh S P. Experimental study on vibration and damping of curved panel treated with constrained viscoelastic layer[J]. Composite structures, 2010, 92(2): 233-243.
[11] Kumar N, Singh S P. Vibration control of curved panel using smart damping[J]. Mechanical Systems and Signal Processing, 2012, 30: 232-247.
[12] 石慧荣, 高溥, 李宗刚, 等. 局部约束阻尼柱壳振动分析及优化设计[J]. 振动与冲击, 2013, 32(22).
SHI Hui-rong, GAO Pu, LI Zong-gang, et al. Vibration analysis and optimization design of a cylindrical shell treated with constrained layer damping[J]. Journal of vibration and shock, 2013, 32(22).
[13] 李超, 李以农, 施磊, 等. 圆柱壳体阻尼材料布局拓扑优化研究[J]. 振动与冲击, 2012, 31(4): 48r52.
LI Chao, LI Yi-nong, SHI Lei, et al. Topological optimization for placement of damping material on cylindrical shells[J]. Journal of vibration and shock, 2012, 31(4): 48r52.
[14] 李家春, 叶邦彦, 汤勇, 等. 基于密度法的热传导结构拓扑优化准则算法术[J]. 华南理工大学学报 (自然科学版), 2006, 34(2).
LI Jia-chun, YE Bang-yan, TANG Yong, et al. Algorithm of topology optimization criteria for heat conduction structure based on density approach[J]. Journal of south china university of technology (Natural Science Edition), 2006, 34(2).
[15] 李攀. 约束阻尼结构动力学拓扑优化方法研究[D]. 重庆大学, 2013.
LI Pan, Dynamic topology optimization of constrained layer damping structure[D]. Chongqing University, 2013.
[16] 郑玲, 谢熔炉, 王宜, 等. 基于优化准则的约束阻尼材料优化配置[J]. 振动与冲击, 2010, 29(11): 156-159.
ZHENG Ling, XIE Rong-lu, WANG Yi, et al. Optimal placement of constrained damping material in structures based on optimality criteria[J]. Journal of vibration and shock, 2010, 29(11): 156-159.

PDF(1550 KB)

841

Accesses

0

Citation

Detail

段落导航
相关文章

/