滚动轴承故障特征信号为非平稳瞬态信号,极容易淹没在与转子转速相关的背景信号和其他噪声中,如何从滚动轴承故障信号中分离出故障特征是其故障诊断的关键。提出将相空间重构和平稳子空间分析相结合的滚动轴承故障诊断方法,首先应用相空间重构实现对滚动轴承故障振动信号的升维,然后利用平稳子空间对高维信号中的平稳源信号和非平稳源信号进行区分,并对峭度值最大的非平稳源信号进行最小熵解卷积降噪,最后对降噪信号进行包络谱分析提取轴承故障特征频率。仿真信号和故障诊断实例表明,诊断效果优于基于EMD的包络解调方法。
Abstract
Rolling bearing’s fault feature signals are non-stationary, transient, which are often submerged in the background signals associated with rotor speed and other noise components, how to separate the fault feature signals from the rolling bearing’s blind sources is an important issue. A method combined the phase space reconstruction technique and the stationary subspace analysis (SSA) was proposed. First, the fault vibration signal’s dimension was increased by the phase space technique. Second, the stationary and the non-stationary source components were distinguished by SSA from the multi-dimensional signals. Then, the selected non-stationary component which had the maximum kurtosis value was de-noised by the minimum entropy deconvolution (MED). Finally, the de-noised non-stationary component was analyzed by the envelope spectrum to extract the fault characteristic frequency. The analysis result of simulation and experiment signals indicated that the proposed method could extract the fault frequency better than the envelope demodulation method based on empirical mode decomposition (EMD).
关键词
相空间重构 /
平稳子空间分析 /
最小熵解卷积 /
滚动轴承 /
故障诊断
{{custom_keyword}} /
Key words
phase space reconstruction /
stationary subspace analysis /
minimum entropy deconvolution ;rolling bearing /
fault diagnosis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钟秉林,黄仁.机械故障诊断学[M]. 北京:机械工业出版社, 2007:298-313.
Zhong Binglin,Huang Ren. Introduction to machine fault diagnosis[M].Beijing:China Machine Press,2007:298-313.
[2] Takens F. Detecting strange attractors in fluid turbulence [A]. Rand D, Young L S. Dynamical systems and turbulence[C]. Berlin: Springer, 1981. 366-381.
[3] 刘清坤,阙沛文,郭华伟,宋寿鹏.基于相空间重构和独立分量分析的超声信号噪声消除[J].上海交通大学学报, 2006, 40(10): 1739-1742.
LIU Qingkun, QUE Peiwen, GUO Huawei, SONG Shoupeng. The noise cancellation for ultrasonic signals using reconstructed phase space and independent component analysis [J]. Journal of Shanghai Jiao Tong University, 2006, 40(10): 1739-1742.
[4] VON BUNAU P,MEINECKE F C,KIRALY F,et al. Finding stationary sub-spaces in multivariate time series [J]. Physical Review Letters, 2009, 103(21): 214101.
[5] Motoaki Kawanabe,Wojciech Samek,Paul von Bu¨nau,et al. An information geometrical view of Stationary Subspace Analysis [J]. ICAA’11 Proceedings of the 21st international conference on Artificial neural: 394-404.
[6] HARA S,KAWAHARA Y,WASHIO T,et al. Separation of stationary and non-stationary sources with a generalized eigenvalue problem [J]. Neural Networks, 2012, 33: 7-20.
[7] VON BUNAU P,MEINECKE F C,SCHOLLER S,et al. Finding stationary brain sources in EEG data[C]. The32nd Annual International Conference of the IEEEEMBS,August 31- September 4, 2010, Buenos Aires, Argentina: 2810-2813.
[8] BLYTHE DAJ,VON BUNAU P,MEINECKE F C,et al. Feature extraction for change-point detection using stationary subspace analysis [J]. IEEE Transactions on neural network and learning system, 23(4): 631-643.
[9] 严如强,钱宇宁,胡世杰,等.基于小波域平稳子空间分析的风力发电机齿轮箱故障诊断[EB/OL]. http://www.cnki.net/kcms/detail/11.2187.TH.20140116.1047.009.html, 2014-01-16 10:47.
Yan Ruqiang,Qian Yuning,Hu Shijie,et al. Wind turbine gearbox fault diagnosis based on wavelet domain stationary subspaces analysis http://www.cnki.net/kcms/ detail/11.2187.TH.20140116.1047.009.html, 2014-01-16 10:47.
[10] 赵长生,姜立勇,蔡娟,等. 基于相空间重构的独立分量分析及其工程应用[J]. 轴承2013, 1: 51-54.
Zhao Changsheng, Jiang Liyong, Cai Juan, et al. Independent component analysis and its engineering application based on the phase space reconstruction [J]. Bearing. 2013,1: 51-54.
[11] 黄艳林,李友荣,肖涵,等.基于相空间重构与独立分量分析局部独立投影降噪方法[J]. 振动与冲击, 2011, 30(1): 33-36.
Huang Yanlin,Li Yourong,Xiao Han,et al. Local independent projection de-noising algorithm based on phase-space reconstruction technique and independent component analysis [J]. Journal of Vibration and Shock, 2011, 30(1): 33-36.
[12] Endo H,Randall R B. Enhancement of Autoregressive Model Based Gear Tooth Fault Detection Technique by the Use of Minimum Entropy Deconvolution Filter [J]. Mechanical Systems and Signal Processing, 2007(21): 906-917.
[13] 刘志川,唐力伟,曹立军.基于MED及FSK的滚动轴承微弱故障特征提取[J]. 振动与冲击, 2014, 33(14): 137-142.
Liu Zhichuan, Tang Liwei, Caolijun. Feature extraction of rolling bearing's weak fault based on MED and FSK [J]. Journal of Vibration and Shock, 2014, 33(14): 137-142.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}