基于声信号处理的骨铣削状态监测

代 煜1,雪 原2,张建勋1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 19-23.

PDF(1439 KB)
PDF(1439 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 19-23.
论文

基于声信号处理的骨铣削状态监测

  • 代  煜1,雪  原2,张建勋1
作者信息 +

Bone milling condition monitoring based on sound signal processing

  • DAI Yu1,XUE Yuan2,ZHANG Jian-Xun1
Author information +
文章历史 +

摘要

考虑到声信号能够提供关于切削刀具和组织接触状态的信息,通过采集和分析在椎板切除手术中发出声信号实现铣削状态的监测。建立微分方程描述了椎板受切削力作用时产生的受迫振动,并证明了振动的幅度会随着骨厚度的减少而增大。利用离散小波变换从采集的声压信号中提取主轴频率的整数次谐波分量,通过计算一些特殊尺度上的小波能量积来判断铣削的状态。提出的状态监测方法在猪脊柱上进行的铣削实验中得到了验证,实验结果表明当椎板将要被穿透时小波能量积会显著增大。

Abstract

In consideration of that the sound can provide some useful information about tool-tissue contact, the condition monitoring is realized by obtaining and analyzing the sound signal during laminectomy surgery. The differential equation is presented to describe the vertebral lamina vibration excited by the cutting force, and it is proved that the vibration amplitude will increase when the thickness of the bone decreases. Discrete wavelet transform is performed to extract the harmonic components whose frequencies are integer multiples of spindle frequency from the sound pressure signal, the product of wavelet energy at some special scales is calculated to judge the milling status. The proposed condition monitoring method is experimentally verified through the milling operation in porcine spines, and the results indicate that the product of wavelet energy will increase significantly when the vertebral lamina is to be penetrated.

关键词

手术机器人 / 铣削状态监测 / 声信号处理 / 小波变换

Key words

Surgical robot / milling condition monitoring / sound signal processing / wavelet transform

引用本文

导出引用
代 煜1,雪 原2,张建勋1. 基于声信号处理的骨铣削状态监测[J]. 振动与冲击, 2015, 34(22): 19-23
DAI Yu1,XUE Yuan2,ZHANG Jian-Xun1. Bone milling condition monitoring based on sound signal processing[J]. Journal of Vibration and Shock, 2015, 34(22): 19-23

参考文献

[1] Lee J, Gozen B A, Ozdoganlar O B. Modeling and experimentation of bone drilling forces[J]. Journal of biomechanics, 2012, 45(6): 1076-1083.
[2] Dai Y, Xue Y, Zhang J. Noncontact Vibration Measurement Based Thoracic Spine Condition Monitoring During Pedicle Drilling[J]. IEEE/ASME Transactions on Mechatronics. Published on line.
[3] Dai Y, Xue Y, Zhang J. Drilling Electrode for Real-Time Measurement of Electrical Impedance in Bone Tissues[J]. Annals of biomedical engineering, 2014, 42(3): 579-588.
[4] 鲁文波, 蒋伟康. 利用声场空间分布特征诊断滚动轴承故障[J]. 机械工程学报, 2012, (13): 68-72.
Lu W, Jiang W. Diagnosing rolling bearing faults using spatial distribution features of sound field[J]. Journal of Mechanical Engineering, 2012, 48(13): 68-72.
[5] Federspil P A, Geisthoff U W, Henrich D, Plinkert P K. Development of the first force-controlled robot for otoneurosurgery[J]. Laryngoscope, 2003, 113(3): 465-471.
[6] Coulson C J, Taylor R P, Reid A P, Griffiths M V, Proops D W, Brett P N. An autonomous surgical robot for drilling a cochleostomy: preliminary porcine trial[J]. Clinical Otolaryngology, 2008, 33(4): 343-347.
[7] Sugita N, Nakano T, Nakajima Y, Fujiwara K, Abe N, Ozaki T, Suzuki M, Mitsuishi M. Dynamic controlled milling process for bone machining[J]. Journal of Materials Processing Technology, 2009, 209(17): 5777-5784.
[8] Wang T M, Luan S, Hu L, Liu Z J, Li W S, Jiang L A. Force-based control of a compact spinal milling robot[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2010, 6(2): 178-185.
[9] Lee W Y, Shih C L, Lee S T. Force control and breakthrough detection of a bone-drilling system[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(1): 20-29.
[10] Lee W Y, Shih C L. Control and breakthrough detection of a three-axis robotic bone drilling system[J]. Mechatronics, 2006, 16(2): 73-84.
[11] Ong F R, Bouazza-Marouf K. The detection of drill bit break-through for the enhancement of safety in mechatronic assisted orthopaedic drilling[J]. Mechatronics, 1999, 9(6): 565-588.
[12] Hu Y, Jin H, Zhang L, Zhang P, Zhang J. State Recognition of Pedicle Drilling With Force Sensing in a Robotic Spinal Surgical System[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 357-365.
[13] Kasahara Y, Kawana H, Usuda S, Ohnishi K. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2012, 8(2): 221-229.
[14] Dai Y, Zhang J, Xue Y. Use of wavelet energy for spinal cord vibration analysis during spinal surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2013, 9(4): 433-440.
[15] Louredo M, Diaz I, Gil J J. DRIBON: A mechatronic bone drilling tool[J]. Mechatronics, 2012, 22(8): 1060-1066.
[16] Cho B, Oka M, Matsumoto N, Ouchida R, Hong J, Hashizume M. Warning navigation system using real-time safe region monitoring for otologic surgery[J]. International Journal of Computer Assisted Radiology and Surgery, 2013, 8(3): 395-405.
[17] Jaesung H, Matsumoto N, Ouchida R, Komune S, Hashizume M. Medical Navigation System for Otologic Surgery Based on Hybrid Registration and Virtual Intraoperative Computed Tomography[J]. Biomedical Engineering, IEEE Transactions on, 2009, 56(2): 426-432.
[18] Xia T, Baird C, Jallo G, Hayes K, Nakajima N, Hata N, Kazanzides P. An integrated system for planning, navigation and robotic assistance for skull base surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2008, 4(4): 321-330.
[19] Ortmaier T, Weiss H, Dobele S, Schreiber U. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2006, 2(4): 350-363.
[20] Shen P, Feng G D, Cao T Y, Gao Z Q, Li X S. Automatic identification of otologic drilling faults: a preliminary report[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2009, 5(3): 284-290.
[21] Cao T Y, Li X S, Gao Z Q, Feng G D, Shen P. A method for identifying otological drill milling through bone tissue wall[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(2): 148-155.
[22] Tian W, Han X, Liu B, Liu Y, Hu Y, Han X, Xu Y, Fan M, Jin H. A robot-assisted surgical system using a force-image control method for pedicle screw insertion[J]. PLoS One, 2014, 9(1): e86346.
[23] Williamson T M, Bell B J, Gerber N, Salas L, Zysset P, Caversaccio M, Weber S. Estimation of Tool Pose Based on Force-Density Correlation During Robotic Drilling[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(4): 969-976.
[24] Mow V C, Huiskes R: Basic Orthopaedic Biomechanics & Mechano-biology, Philadelphia: Lippincott Williams & Wilkins, 2005.

PDF(1439 KB)

623

Accesses

0

Citation

Detail

段落导航
相关文章

/