刚性路面道路刚度计算方法的理论研究

丁建国1,王海龙2,皮杰1,黄慧佳1,王春伟1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 192-198.

PDF(1117 KB)
PDF(1117 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 192-198.
论文

 刚性路面道路刚度计算方法的理论研究

  • 丁建国1,王海龙2,皮杰1,黄慧佳1,王春伟1
作者信息 +

Theoretical study on parameter identification for the road stiffness of a rigid pavement

  • DING Jian-guo1,WANG Hai-long2,PI Jie1,HUANG Hui-jia1,WANG Chun-wei1
Author information +
文章历史 +

摘要

为了实现坦克、装甲车及高档民用车辆在道路行驶过程中的主动减振控制,必须首先完成对道路刚度参数的快速计算。该文以温克尔地基模型为基础,依据弹性地基板理论建立刚性路面道路的计算模型,应用刚性路面板挠度函数的半逆解法推导了刚性路面道路刚度的理论计算公式。算例结果表明:本文得到的理论公式与精确解计算结果相比,其误差小于其他文献中理论公式与精确解计算结果的误差,从而说明该理论公式具有较高的计算精度。

Abstract

In order to achieve the active vibration control of tanks, armored vehicles and civilian premium cars during driving, the fast calculation for the road stiffness needs to be first made. Based on the Winkler foundation model, the calculating model of a rigid pavement is built according to the elastic foundation plate theory, and the theoretical formula for calculating the road stiffness of a rigid pavement is derived by using the semi-inverse method of rigid pavement deflection function. The results of the examples showed that compared with the exact solution ,the error of the theoretical formulas derived in this paper is smaller than that of other formula in other paper, and so this theoretical formula has higher accuracy.

关键词

刚性路面 / 道路刚度 / 弹性地基板 / 挠度函数 / 半逆解法

Key words

Rigid pavement / Stiffness of the road / Elastic foundation plate / Deflection function / Semi-inverse method

引用本文

导出引用
丁建国1,王海龙2,皮杰1,黄慧佳1,王春伟1.  刚性路面道路刚度计算方法的理论研究[J]. 振动与冲击, 2015, 34(22): 192-198
DING Jian-guo1,WANG Hai-long2,PI Jie1,HUANG Hui-jia1,WANG Chun-wei1. Theoretical study on parameter identification for the road stiffness of a rigid pavement[J]. Journal of Vibration and Shock, 2015, 34(22): 192-198

参考文献

[1] Zenkour A M. Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate[J]. Archive of Applied Mechanics: English Edition, 2007, 77(4): 197-214.
[2] 王春玲、黄义.弹性半空间地基上四边自由矩形板的弯曲解析解[J]. 岩土工程学报, 2005, 27(12): 1402-1407.
WANG Chun-ling, Huang Yi. Analytic solution of rectangular plates loaded with vertical force on an elastic half space [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1402-1407. (in Chinese)
[3] 钟阳, 孙爱民, 周福霖, 等. 弹性地基上四边自由矩形薄板分析的有限积分变换法[J]. 岩土工程学报, 2006, 28(11): 2019-2022.
ZHONG Yang, SUN Ai-min, ZHOU Fu-lin, et al. Analytical solution for rectangular thin plate on elastic foundation with four edges free by finite cosine integral transform method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2019-2022.(in Chinese)
[4] 祝海燕, 王选仓, 杨殿海, 等. 弹性地基上有限尺寸复合路面道路板受力分析[J]. 沈阳建筑大学学报(自然科学版), 2008, 1: 002.
ZHU Hai-yan, WANG Xuan-cang, YANG Dian-hai, et al. Mechanic Analysis of Limited Dimensional Composite Pavement on Elastic Foundations[J]. Journal of Shenyang Jianzhu University (Natural Science) , 2008, 1: 002. (in Chinese)
[5] 赵智. 矩形板问题复变量求解方法的研究[D]. 国防科学技术大学, 2005.
ZHAO Zhi. The Method of Complex Variable for Rectangular Plate Problem[D].National University of Defense Technology,2005.
[6] 刘俊卿, 刘超,赵洪金. 横观各向同性刚性路面体系静动力分析[J]. 长安大学学报(自然科学版) , 2010, 30(2): 48-52.
LIU Jun-qing, LIU Chao, ZHAO Hong-jin. Static and dynamic analysis of transversely isotropic rigid
pavement structure system[J]. Journal of Chang an University(Natural Science Edition) , 2010, 30(2): 48-52. (in Chinese)
[7] Patil V A, Sawant V A, Deb K. 3D Finite-Element Dynamic Analysis of Rigid Pavement Using Infinite Elements[J]. International Journal of Geomechanics: English Edition, 2013, 13(5): 533-544.
[8] Patil V A, Sawant V A, Deb K. 2-D finite element analysis of rigid pavement considering dynamic vehicle–pavement interaction effects[J]. Applied Mathematical Modelling: English Edition, 2013, 37(3): 1282-1294.
[9] Sawant V A, Patil V A, Deb K. Effect of vehicle–pavement interaction on dynamic response of rigid pavements[J]. Geomechanics and Geoengineering: English Edition, 2011, 6(1): 31-39.
[10] 姚伟岸,苏滨,钟万勰. 基于相似性原理的正交各向异性板弯曲Hamilton体系[J].中国科学: E 辑,2001,31(4): 342-347.
    YAO Wei-an, Su Bin, Zhong Wan-xie. Hamiltonian System for Plate Bending Based on Analogy Theory[J].Science in China(Series E),2001,31(4):342-347.
[11] V.A. Sawant, Kousik Deb, V.A. Patil. Dynamic Pavement-Vehicle Interaction of Rigid Pavement Resting on Two-Parameter Soil Medium[J]. Geotechnical Special Publication: English Edition, 2010: 209–214.
[12] H. Akhavan, Sh. Hosseini Hashemi, H. Rokni Damavandi Taher, A. Alibeigloo, Sh. Vahabi. Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation [J]. Buckling analysis, Comput. Mater: English Edition, 2009,44: 968–978.
[13] 曲庆璋,章权,季求知,等. 弹性薄板理论[M].北京:人民交通出版社,2000.
    QU Qing-zhang,ZHANG Quan,JI Qiu-zhi, et al. Elastic Thin Plate Theories[M]. Beijing:China Communications Press,2000.
[14] 成祥生.弹性地基上的自由边矩形板[J].应用数学和力学,1992,13(10).
    CHENG Xiang-sheng.Rectangular Plates on Elastic Foundation[J].Applied Mathematics and
    Mechanics,1992,13(10).
[15] Eatock Taylor E, Ohkusu M.Green function for hydroelastic analysis of vibrating free-free beams                  
    and plates[J].Applied Ocean Research,2000,22.
[16] 王克林,黄义.弹性地基上的自由边矩形板[J].计算结构力学及其应用,1985,5(2).
    WANG Ke,HUANG Yi.Rectangular Plates on Elastic Foundation[J].Computational Structural Mechanics And Applications,1985,5(2).

PDF(1117 KB)

Accesses

Citation

Detail

段落导航
相关文章

/