利用BRB实现桥梁排架基于保险丝理念的抗震设计

孙治国1,2,华承俊1,2,石岩1,2,王东升1,2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 199-205.

PDF(3068 KB)
PDF(3068 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 199-205.
论文

利用BRB实现桥梁排架基于保险丝理念的抗震设计

  • 孙治国1,2,华承俊1,2,石岩1,2,王东升1,2
作者信息 +

Seismic design of bridge bents with BRB as structural fuse

  • SUN Zhi-guo1,2,HUA Cheng-jun1,2, SHI Yan1,2, WANG Dong-sheng1,2
Author information +
文章历史 +

摘要

防屈曲支撑(Buckling-restrained brace, BRB)是一种利用低屈服点芯材轴向受压、受拉屈服而耗散能量的耗能元件。在钢筋混凝土桥梁排架中设置BRB,通过合理的设计使其先于排架屈服并耗能,从而减少排架本身的地震损伤,因BRB破坏后易于更换,在体系中起到了“保险丝”作用。本文初步发展了利用BRB实现桥梁排架基于“保险丝”理念的抗震设计方法,通过拟静力和增量动力分析手段对BRB减小排架地震损伤的效果进行了验证。结果表明:BRB核心段长度的选择是影响排架屈服顺序的关键,合理设计的BRB先于桥梁排架构件发生屈服并消耗地震能量,提高了桥梁排架的强度和刚度,延缓了排架本身的屈服过程,并减少了排架的变形需求。

Abstract

Buckling-restrained brace (BRB) made of low yield strength steel is an energy dissipation damper, which can yield in tension and compression without buckling. BRB added to an RC bridge bent will yield and dissipate seismic energy prior to the bent itself by reasonable design, and the seismic damage to the bent will be decreased. The damaged BRB will be replaced and designed as structural fuse. A preliminary seismic design method based on structural fuse concept was proposed, and the seismic damage control effect for the bent by using BRB was verified by quasi-static and incremental dynamic analysis. It is found that the length of the BRB core is the key influencing factor for the yield sequence of the bent. The properly designed BRB would yield before the bent and dissipate most of the seismic energy through hysteretic behavior of the fuse while avoiding damage to the bent itself. The strength and lateral stiffness of the bent were improved, and yielding of the transverse beam and pier would be delayed. Also, the deformation demand of the bent would be decreased by using BRB.

关键词

桥梁排架 / 防屈曲支撑(BRB) / 可替换耗能元件 / 保险丝 / 拟静力分析 / 增量动力分析

Key words

Bridge bents / buckling-restrained brace (BRB) / replaceable energy dissipation damper / structural fuse / quasi-static analysis / incremental dynamics analysis

引用本文

导出引用
孙治国1,2,华承俊1,2,石岩1,2,王东升1,2. 利用BRB实现桥梁排架基于保险丝理念的抗震设计[J]. 振动与冲击, 2015, 34(22): 199-205
SUN Zhi-guo1,2,HUA Cheng-jun1,2, SHI Yan1,2, WANG Dong-sheng1,2. Seismic design of bridge bents with BRB as structural fuse[J]. Journal of Vibration and Shock, 2015, 34(22): 199-205

参考文献

[1] Kunnath S K, Cross J L. Inelastic response of the Cypress viaduct to the Loma Prieta earthquake [J]. Engineering Structures, 1995, 17(7): 485-493.
[2] Marini A, Spacone E. Analysis of reinforced concrete elements including shear effects [J]. ACI Structural Journal, 2006, 103(5): 645-655.
[3] Christopoulos C, Garcia D L, Tsai K C. Educational reconnaissance of the area affected by the 1999 Chi-Chi earthquake—Three years later [J]. Earthquake Spectra, 2005, 21(1): 31-52.
[4] 王东升,郭 迅,孙治国,等.汶川大地震公路桥梁震害初步调查[J].地震工程与工程振动,2009,29(3):84-94.
   WANG Dongsheng, GUO Xun, SUN Zhiguo, et al. Damage to highway bridges during Wenchuan earthquake [J]. Earthquake Engineering and Engineering Dynamics, 2009, 29(3): 84-94.
[5] 吕西林,陈聪.带有可更换构件的结构体系研究进展[J].地震工程与工程振动,2014,34(1):27-36.
   LU Xilin, CHEN Cong. Research progress in structural systems with replaceable members [J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1): 27-36.
[6] 吕西林,陈 云,毛苑君.结构抗震设计的新概念—可恢复功能结构[J].同济大学学报(自然科学版),2011, 39(7): 941-948.
   LU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: Earthquake resilient structures [J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-948.
[7] El-Bahey S, Bruneau M. Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents [J]. Engineering Structures, 2011, 33(3): 1052-1061.
[8] Vagas R, Bruneau M. Analytical response and design of buildings with metallic structural fuse. I [J]. Journal of Structural Engineering, ASCE, 2009, 135(4): 386-393.
[9] Vagas R, Bruneau M. Experimental response of buildings designed with metallic structural Fuse. II [J]. Journal of Structural Engineering, ASCE, 2009, 135(4): 394-403.
[10] 吴徽,张艳霞,张国伟,等.防屈曲支撑作为可替换耗能元件抗震性能试验研究[J].土木工程学报,2013,46(11):29-36.
    WU Hui, ZHANG Yanxia, ZHANG Guowei, et al. Experimental study on seismic performance of replaceable buckling-restrained braces in reinforced concrete frame [J]. China Civil Engineering Journal, 2013, 46(11): 29-36.
[11] Usami T, Lu Zhizhao, Ge Hanbin. A seismic upgrading method for steel arch bridges using buckling-restrained braces [J]. Earthquake Engineering and Structural Dynamics, 2005, 34(4): 471-496.
[12] Chen Zhiyi, Ge Hanbin, Kasai A, et al. Simplified seismic design approach for steel portal frame piers with hysteretic dampers [J]. Earthquake Engineering and Structural Dynamics, 2007, 36(4): 541-562.
[13] El-Bahey S, Bruneau M. Bridge piers with structural fuses and bi-steel columns. I: Experimental testing [J]. Journal of Bridge Engineering, ASCE, 2012, 17(1): 25-35.
[14] El-Bahey S, Bruneau M. Bridge piers with structural fuses and bi-steel columns. II: Analytical investigation [J]. Journal of Bridge Engineering, ASCE, 2012, 17(1): 36-46.
[15] 刘 昕.设置防屈曲支撑双柱式桥墩抗震性能研究[D].大连:大连海事大学,2013.
    Liu Xin. Seismic ability of double column piers with buckling-restrained braces [D]. Dalian: Dalian Maritime University, 2013.
[16] Paolacci F, Giannini R. An experimental and numerical investigation on the cyclic response of a portal frame pier belonging to an old reinforced concrete viaduct [J]. Earthquake Engineering and Structural Dynamics, 2012, 41(6): 1109-1127.
[17] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures [J]. ACI Structural Journal, 2007, 104(2): 133-141.
[18] Mirtaheri M, Gheidi A, Zandi A P, et al. Experimental optimization studies on steel core lengths in buckling restrained braces [J]. Journal of Constructional Steel Research, 2011, 67(8): 1244-1253.
[19] 潘志宏,洪博.地震动频谱特性和持时对IDA结果影响的研究[J].振动与冲击,2014,33(5):155-159,199.
    PAN Zhi-hong, HONG Bo. Influence of spectral characteristics and duration of ground motions on results of IDA [J]. Journal of Vibration and Shock, 2014, 33(5): 155-159, 199.
[20] 李春祥,汤钰新.混合形状记忆合金和屈曲约束支撑系统自复位抗震研究[J].振动与冲击,2014,33(10):152-156,176.
    LI Chun-xiang, TANG Yu-xin. Self-centering earthquake-resistance of a hybrid shape memory alloy and buckling-restrained brace system [J]. Journal of Vibration and Shock, 2014, 33(10): 152-156, 176.

PDF(3068 KB)

1718

Accesses

0

Citation

Detail

段落导航
相关文章

/