含液饱和多孔弹性梁的随机振动

周凤玺?1,2,马强1,米海珍1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 206-209.

PDF(1136 KB)
PDF(1136 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 206-209.
论文

含液饱和多孔弹性梁的随机振动

  • 周凤玺?1,2,马强1,米海珍1
作者信息 +

Random vibration of fluid-saturated porous elastic beam  

  • ZHOU Feng-xi1,2, MA Qiang1, MI Hai-zhen1
Author information +
文章历史 +

摘要

根据不可压多孔弹性介质理论和随机振动理论,建立了孔隙流体沿轴向扩散的情形下,含液饱和多孔弹性梁在集中荷载作用下横向弯曲的随机振动方程。对梁的位移响应和截面固相弯矩响应进行分析,分别得到了输入集中荷载为平稳随机过程时简支梁的位移响应和弯矩响应的功率谱密度函数和方差等数字特征。作为数值算例,考虑一理想白噪声平稳随机集中荷载作用下的简支饱和多孔梁,对其位移响应和界面固相弯矩的功率谱密度函数进行了分析,并讨论了流-固耦合项对梁位移以及弯矩的减振效果。结果表明,通过控制孔隙中流体的渗透系数可以达到控制梁的随机振动的目的。

Abstract

According to the theory of incompressible porous elastic medium and the continuum theory of random vibration, the random vibration equation of transverse bending on fluid-saturated porous elastic beam were established with the concentrated load under the condition of diffusion of pore fluids along the axial direction. Through the analysis on the response of both the displacement of beam and the solid moment of cross section, the power spectral density function and variance and other digital features of the displacement and the moment response on the simply supported beam could be obtained when the input of concentrated load is stationary random process. As a numerical example, considering saturated porous simply supported beam under the concentrated load in an ideal white noise stationary random, the power spectral density function of the displacement response and the interface solid moment were analyzed and the damping effect of the flow-solid coupling term on the beam displacement and bending moment were also discussed. The results showed that random vibration in the beam could be controlled by changing the coefficient of permeability in the pore fluid.

关键词

多孔介质理论 / 随机振动 / 功率谱密度函数 / 简支梁

Key words

porous media theory / random vibration / power spectral density function / simply supported beam

引用本文

导出引用
周凤玺?1,2,马强1,米海珍1. 含液饱和多孔弹性梁的随机振动[J]. 振动与冲击, 2015, 34(22): 206-209
ZHOU Feng-xi1,2, MA Qiang1, MI Hai-zhen1. Random vibration of fluid-saturated porous elastic beam  [J]. Journal of Vibration and Shock, 2015, 34(22): 206-209

参考文献

[1]  Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid I: Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28: 168-178.
[2]  Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid II: Higher frequncy range[J].The Journal of the Acoustical Society of America, 1956, 28: 179-191.
[3]  de Boer R. Highlights in the Historical Development of the Porous Media Theory-Toward a Consistent Macroscopic Theory [J] . Applied    Mechanics Reviews, 1996, 49:201-262.
[4]  Li L P. Cederbaum G, Sehulgasser K.Vibration of poroelastic beams with axial diffusion[J]. European Journal of Mechanics, A Solids, 1996, 15: 1077-1094.
[5]  Li L P, Cederbaum G, Schulgasser K. Interesting behavior    patterns of poroelastic beams and columns[J]. International Journal of Solids and Structures, 1998, 35: 4931-4943.
[6]  张燕,杨骁,李惠.不可压饱和多孔弹性简支梁的动力响应  [J].力学季刊,2006,27(3):427-433.
ZHANG Yan, Yang Xiao, Li Hui. Dynamical response of an incompressible saturated poroelastic beam with simply supported ends[J].Chinese Quarterly of mechanics. 2006,27(3):427-433.
[7]  杨骁,李丽.轴向扩散下简支饱和多孔弹性梁的大挠度分析 [J].固体力学学报.2007,28(3):313-3l7.
YANG Xiao, Li Li. Large deflection analysis of simply supported saturated poroelastic beam[J]. Chinese Journal of Solid Mechanics. 2007,28(3):313-3l7.
[8]  何录武,杨骁. 饱和不可压多孔弹性板在面内扩散下的动力 弯曲理论[J].固体力学学报. 2008,29(2):121-128.
HE Lu-wu, Yang Xiao. A dynamic bending model of incompressible saturated[J]. Chinese Journal of Solid Mechanics. 2008, 29(2): 121-128.
[9]  Wen P H. The Analytical Solutions of Incompressible Saturated Poroelastic Circular Mindlin's Plate[J]. J. Appl. Mech.2012, 79(5):1-7.
[10] Shanker B, Kumar J M, Shah S A, et al. Radial vibrations of an infinitely long poroelastic composite hollow circular cylinder[J]. International Journal of Engineering, Science and Technology, 2012, 4(2): 17-33.
[11] Rani B S, Ramesh T, Reddy P M. Effect of normal stress under an excitation in poroelastic flat slabs[J]. International Journal of Engineering, Science and Technology, 2011, 3(2).
[12] 欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998:137-154.
OU Jin-ping, Wang Guang-yuan. Random vibration of structure[M].Beijing: Higher Education Press, 1998:137-154.
[13] Liu D, Xu W, Xu Y. Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations[J]. Acta Mechanica Sinica, 2013, 29(3): 443-451.
[14] Weaver Jr W, Timoshenko S P, Young D H. Vibration problems in engineering[M]. John Wiley & Sons, 1990.
[15] 周凤玺,米海珍. 弹性地基上不可压饱和多孔弹性梁的自由振动[J]. 兰州理工大学学报,2014,40(2):118-122
ZHOU Feng-xi, Mi Hai-zhen. The free vibration of incompressible saturated poroelastic beam on elastic foundation[J]. Journal of Lanzhou University of Technology, 2014,40(2):118-12

PDF(1136 KB)

607

Accesses

0

Citation

Detail

段落导航
相关文章

/