根据斜向激振模式下振动压实的土壤其水平、垂直两方向上滞回恢复力与位移之间呈现不同的滞回形态,考虑土壤的密实度较高时振动轮在土壤面层水平方向上发生脱耦打滑,垂直方向上发生脱耦跳振现象,采用仅依据土壤特性参数的水平对称和垂直不对称滞回模型,分阶段按工况建立系统动力学方程,在一次近似前提下,利用谐波线性法将非线性作用力线性化为等效刚度和等效阻尼。通过数值计算,研究斜向激振下振动轮水平和垂直方向上非线性滞回响应及相互耦合特性,分析压实进程中振动轮发生连耦、滑转和跳振三工况下响应特性及工况相互转换规律。压实进程中合理调整激振参量,一定程度上可避免振动轮发生跳振、打滑现象,从而保证压实质量、压实效率及驾驶舒适性。
Abstract
The resilience of the drum of vibration roller in the horizontal and vertical direction against displacement reveals different hysteresis during the slant excitation compaction. As the soil compactness is high enough, jump vibration and slipping are produced through vibration roller. Based on the above two notions, kinetic equations of various compaction conditions and stages are established in terms of segmental line horizontal symmetric hysteretic and vertical asymmetric hysteretic model according to soil property parameters. According to the first order approximation, the equivalent damping coefficient and equivalent stiffness coefficient of hysteretic resilience were deduced through the harmonic linearization method. By means of numerical simulation, the hysteresis characteristics of three compaction conditions and correlating coupling properties of horizontal and vertical direction were in turn analyzed, namely, contraction vibration, slip-rolling and jump vibration, and its transformation rules were revealed. Adjustment of excitation amplitude and excitation frequency could availably restrain jump vibration and slipping of the drum to ensure the quality of compaction, efficiency and driving comfort in the compaction process.
关键词
智能振动压路机 /
斜向激振模式 /
滞回模型 /
滑转 /
跳振 /
耦合特性
{{custom_keyword}} /
Key words
intelligent vibratory roller /
slant excitation mode /
hysteresis model /
slip-rolling /
jump vibration /
coupling characteristics;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] T S Yoo, E T Selig. Dynamics of bibratory-roller compaction [J]. Journal of the geotechnical engineering division, 1979, 105(10): 1211-1231.
[2] 韩清凯, 闻梆椿. 一种非对称滞回受迫振动系统及其分析[J]. 振动工程学报.1998.9.11(3): 291-296.
(Han Qin-Kai, Wen Bang-Chun. Analysis of a forced vibration system with asymmetrical hysteresis[J]. Journal of Vibration Engineering, 1998, 11(30): 291-296).
[3] Beainy F, Commuri S, Zaman M. Dynamical Response of Vibratory Rollers during the Compaction of Asphalt Pavements. Journal of Engineering Mechanics, 2013.
[4] 郑书河, 林述温. 水平激振模式下压实系统动力学过程及响应特性研究[J]. 振动与冲击, 2014, 33(2): 147-151.
(Zheng Shu-He, Lin Shu-Wen. Dynamic Process of Horizontal Excitation Compaction System and Its Response Characteristics[J]. Journal of Vibration and Shock, 2014, 33(2):166-168.)
[5] Machet J M, Morel L G.. Vibratory compaction of Bituminous mixes in France [J]. Pavement Construction and Field Control, 1977: 326-340.
[6] 孙祖望,卫雪莉等. 振荡压实的动力学过程及其响应特性的研究[J]. 中国公路学报,1998.4,11(2): 117-126.
(Sun Zu-wang, Wei Xue-li, Wang Que. The dynamic process of oscillatory compaction and its response characteristics[J]. China Journal of Highway and Transport, 1998, 11(2): 117-126.)
[7] Andergg R, Kanfmann K. Intelligent compaction with vibratory rollers-feedback control systems in automatic compaction and compaction control [J]. Journal of the transportation research record,2004: 124-134.
[8] 秦四成. 振动压路机动力学特性分析[D]. 长春: 吉林工业大学, 1998.
(Qing Si-cheng. Dynamic characteritics analysis of vibratory roller[D]. changchun: Jilin University of Technology,1998.)
[9] 郑书河. 多模式激振下压实系统的动力学特性及路面压实密实度预测模型研究[D]. 福州: 福州大学,2014.
(Zheng Shu-he. Research on the Dynamical Characteristics of Multi-mode Excitation Compaction System and Prediction Model of Pavement Compactness[D]. Fuzhou: Fuzhou University,2014.)
[10] Okuizumin, Kimura K. Multiple time scale analysis of hysteretic systems subjected to harmonic excitation [J]. Journal of Sound and Vibration, 2004, 272(3-5): 675-701.
[11] Chi-Hsiang Wang, Shuenn-Yih Chang. Development and Validation of a Generalized Biaxial Hysteresis Model[J]. Journal of Engineering Mechanics, 2007,133(2): 141-152.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}