不同质量粒子分布SPH方法及其应用

艾孜海尔?哈力克1, 2,热合买提江?依明2,开依沙尔?热合曼2,买买提明?艾尼1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 62-67.

PDF(2285 KB)
PDF(2285 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 62-67.
论文

不同质量粒子分布SPH方法及其应用

  • 艾孜海尔•哈力克1, 2 ,热合买提江•依明2,开依沙尔•热合曼2,买买提明•艾尼1
作者信息 +

SPH METHOD WITH DIFFERENT MASS PARTICLE DISTRIBUTION  AND ITS APPLICATION

  • Azhar Halik1, 2, Rahmatjan Imin2,Kaysar Rahman2, Mamtimin Geni1
Author information +
文章历史 +

摘要

光滑粒子流体动力学(SPH)方法是一种新发展起来的纯拉格朗日数值方法,其最大的优点是不需要对自由表面进行特殊处理,有利于模拟飞溅、破碎等高度非线性流。SPH方法的一个缺点是计算的时间复杂性高,因为需要大量粒子详细定义流体,使之计算时间相应增加。本文在核半径保持不变的情况下为了提高计算效率和精度提出不同质量粒子分布的方法,即在关键计算区域分布较小质量粒子,而在其它区域分布较大质量粒子。本文首先通过静水数值模拟,初步验证了此方法的有效性。之后,对半浸泡振荡圆筒所产生的小振幅水波进行了数值模拟。将数值模拟结果与已有的实验结果进行了对比分析。分析结果表明此方法能够明显提高计算精度的同时可以节省大量计算时间。

Abstract

The Smoothed Particle Hydrodynamics (SPH) method is a new  developed pure  lagrange numerical method, the major advantage of SPH is that no special treatment of the free surface is required, it is beneficial for simulating highly non-linear flows, e.g. to run up and splash around bodies. One drawback of the SPH method is that it has high computational time complexity associated with the large number of particles desirable for good flow definition. In this paper, to improve accuracy without substantially increasing computational time, a different mass particle distribution method is used for a pre-selected area where high resolution is desirable. The effectiveness of the proposed method is tested and verified with the still water problem. Then,  surface waves generated by a heaving cylinder of different wave period and stroke is numerically simulated, and the simulation results are compared with the experimental data. Numerical results shows that using this method brings a significant improvement in accuracy without substantially increasing computational time.

 

关键词

光滑流体动力学方法 / 波浪 / 振荡圆筒 / 不同质量粒子 / 流体与结构物相互作用

Key words

smoothed particle hydrodynamics / wave;  / heaving cylinder / different mass particle

引用本文

导出引用
艾孜海尔?哈力克1, 2,热合买提江?依明2,开依沙尔?热合曼2,买买提明?艾尼1. 不同质量粒子分布SPH方法及其应用[J]. 振动与冲击, 2015, 34(22): 62-67
Azhar Halik1, 2, Rahmatjan Imin2,Kaysar Rahman2, Mamtimin Geni1 . SPH METHOD WITH DIFFERENT MASS PARTICLE DISTRIBUTION  AND ITS APPLICATION[J]. Journal of Vibration and Shock, 2015, 34(22): 62-67

参考文献

[1] Lucy LB. A numerical approach to the testing of fusion process [J]. Astronomical Journal 1977; 88:1013–1024.
[2] Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics [J]. Monthly Notices of the Royal Astronomical Society 1977; 235:911–934.
[3] Monaghan JJ, Kos A, Issa N. Fluid motion generated by impact. Journal of Waterway, Port, Coastal and Ocean Engineering 2003; 129:250–259.
[4] Hopkins P F. A general class of Lagrangian smoothed particle hydrodynamics methods and implications for fluid mixing problems[J]. Monthly Notices of the Royal Astronomical Society, 2013, 428(4): 2840-2856.
[5] 强洪夫, 石超, 陈福振, 等. 基于大密度差多相流 SPH 方法的二维液滴碰撞数值模拟[J]. 物理学报, 2013, 62(21): 214701-214701.
Qiang Hong-Fu,Shi Chao,Chen Fu-Zhen,Han Ya-Wei.Simulation of two-dimensional droplet collisions based on SPH method of multi-phase flows with large density differences [J]. Acta Phys. Sin. (in Chinese). 2013, 62(21): 214701-214701.
[6] 刘栋, 郭印诚, 林文漪. 液滴变形及表面张力模拟的光滑粒子动力学方法[J]. 清华大学学报: 自然科学版, 2013 (3): 384-388.
LIU Dong, GUO Yingcheng, LIN Wenyi. Droplet deformation and surface tension modeling using the smoothed particle hydrodynamics method [J]. J Tsinghua Univ (Sci&Tech) (in chinese). 2013 (3): 384-388.
[7] Domínguez J M, Crespo A J C, Gómez-Gesteira M. Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method[J]. Computer Physics Communications, 2013, 184(3): 617-627.
[8] Imin R, Geni M. Stress Analysis of Gear Meshing Impact Based on SPH Method[J]. Mathematical Problems in Engineering, 2014.
[9] Barcarolo D A, Le Touzé D, Oger G, et al. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method[J]. Journal of Computational Physics, 2014.
[10] Feldman J, Bonet J. Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. International Journal for Numerical Methods in Engineering 2007; 72:295–324.
[11] Yu YS, Ursell F. Surface wave generated by an oscillating circular cylinder on water of finite depth: theory and experiment. Journal of Fluid Mechanics 1961; 11:529–551.
[12] J. J. Monaghan. Smoothed particle hydrodynamics [J]. Reports on Progress in Physics, 2005, 68:1703-1759
[13] Dalrymple, R.A., Rogers, B.D., 2006. Numerical modeling of water waves with the SPH method. Coastal Engineering 53, 141–147.
[14] Guilcher PM, Ducorzet G, Alessandrini B, Ferrant P. Water wave propagation using SPH models. Proceedings of Second International SPHERIC Workshop, Spain, 2007; 119–124.
[15] Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics 2003; 191:448–475.
[16] Shao S, Lo EYM. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources 2003; 26:787–800.
[17] Monaghan JJ, Kos A. Solitary waves on a Cretan Beach. Journal of Waterway, Port, Coastal and Ocean Engineering 1999; 125:145–154.
[18] Crespo, A.J.C.,Gomez-Gesteira, M., Dalrymple, R.A., Boundary conditions generated by dynamic particles in SPH methods. Computers, Materials& Continua 2007a ;5,173–184.
[19] Rogers BD, Dalrymple RA. SPH modelling of tsunami waves. In Advances in Coastal and Ocean Engineering, Liu PL-F, Yeh H, Synolakis C (eds), vol. 10. World Scientific: Singapore, 2008; 75–100.
[20] Quinlan NJ, Basa M, Lastiwka M. Truncation error in mesh-free particle methods. International Journal for Numerical Methods in Engineering 2006; 66:2064–2085.
[21] Monaghan JJ. SPH without a tensile instability. Journal of Computational Physics 2000; 159:290–311.
[22] Zhou J, Causon D, Mingham C, Ingram D. The surface gradient method for the treatment of source terms in the shallow water equations. Journal of Computational Physics 2001; 168:1–25.

PDF(2285 KB)

1253

Accesses

0

Citation

Detail

段落导航
相关文章

/