粘弹性本构对于人耳动力学特性影响的数值研究

田佳彬,饶柱石1,塔娜1,许立富1,黄新生2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 74-81.

PDF(1743 KB)
PDF(1743 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 74-81.
论文

粘弹性本构对于人耳动力学特性影响的数值研究

  • 田佳彬 ,饶柱石1,塔娜1,许立富1,黄新生2
作者信息 +

Numerical analysis of the effects of viscoelastic constitutive relation on dynamic characteristics of human ear

  • Tian Jiabin1, Rao Zhushi1, Ta Na1, Xu Lifu1, Huang Xinsheng2
Author information +
文章历史 +

摘要

为了分析中耳软组织的粘弹性材料特性对于人耳系统动力学特性的影响,建立了包括外耳道、中耳和耳蜗的整耳有限元模型。外耳道和中耳模型应用微CT扫描和逆向成型技术建立,耳蜗采用双腔导管形式的简化模型。基于该模型,中耳部分软组织的材料属性采用线性粘弹性,用于表征动态分析中的能量损耗。于外耳道施加90 dB SPL声压,从而模拟正常人耳的声激励,并在计算中考虑外耳道气体、中耳固体和耳蜗流体的多场耦合作用。中耳的结构响应包括了鼓膜脐部与镫骨底板位移和镫骨底板速度传递函数,耳蜗的流体压力响应则用于计算中耳压力增益、耳蜗输入声阻抗和耳蜗压力逆向传递函数。结果表明,考虑粘弹性特性后,人耳系统的动态响应参数相比线弹性有了一定程度的改善,特别是在高频段的提升较为明显,与实验测量数据具有更好的匹配效果,说明了粘弹性本构关系的引入在人耳动力学建模中的必要性。

Abstract

To analyze the effect of viscoelastic properties of middle ear soft tissues on the dynamic characteristic of the human ear system, a finite element (FE) model of the human ear consisting of the external ear canal, middle ear and cochlea was developed in this study. The geometric model of the external ear canal and middle ear was constructed via micro-CT scanning and reverse engineering technology, and the cochlea was simplified as an uncoiled, two-chambered and fluid-filled duct. The viscoelastic material behavior was introduced into middle ear soft tissues to represent the energy dissipation in dynamic analysis. Multiphysics coupled analysis was conducted on the model which included the air in the ear canal, the fluid in the cochlea and middle ear structures. Then a sound pressure of 90 dB SPL was applied at the ear canal to simulate the sound stimulus of normal human ear. Middle ear structural responses such as movements of the tympanic membrane and stapes footplate in response to the sound stimulus were derived from this model. Meanwhile, by calculating the pressure of the fluid in the cochlea, the sound pressure gain across the middle ear, cochlear input impedance and reverse pressure transfer function of cochlea were also obtained. The results show that, employing viscoelastic properties of middle ear soft tissues improved the dynamic responses of the human ear system as compared with linear elasticity, especially at the high-frequency range. The better agreements between the model and experimental data in the literature illustrate the necessity of considering viscoelasticity for dynamic modeling of the human ear.

关键词

粘弹性 / 动态能耗 / 耳蜗 / 动力学建模 / 多场耦合 / 有限元分析

Key words

viscoelasticity / dynamic energy dissipation / cochlea / dynamic modeling / multiphysics coupling / finite element analysis

引用本文

导出引用
田佳彬,饶柱石1,塔娜1,许立富1,黄新生2. 粘弹性本构对于人耳动力学特性影响的数值研究[J]. 振动与冲击, 2015, 34(22): 74-81
Tian Jiabin1, Rao Zhushi1, Ta Na1, Xu Lifu1, Huang Xinsheng2. Numerical analysis of the effects of viscoelastic constitutive relation on dynamic characteristics of human ear[J]. Journal of Vibration and Shock, 2015, 34(22): 74-81

参考文献

[1] 姚文娟, 陈懿强, 叶志明, 等. 耳听力系统生物力学研究进展 [J]. 力学与实践, 2013, 35(6): 1-10.
YAO Wen-juan, CHEN Yi-qiang, YE Zhi-ming. Advance in biomechanics of human ear as hearing system [J]. Mechanics in Engineering, 2013, 35(6): 1-10.
[2] Nie X, Liu H, Huang X, et al. Finite element model of human ear reconstruction through micro-computer tomography [J]. Acta Oto-Laryngologica, 2011, 131(3): 269-276.
[3] 王学林, 胡于进. 蜗窗激励评价的有限元计算模型研究 [J]. 力学学报, 2012, 44(003): 622-630.
WANG Xue-lin, HU Yu-jin. Evaluation of round window stimulation by a FE model of human auditory periphery [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(003): 622-630.
[4] Cheng T, Gan R Z. Experimental measurement and modeling analysis on mechanical properties of tensor tympani tendon [J]. Medical Engineering & Physics, 2008, 30(3): 358-366.
[5] Zhang X, Gan R Z. Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition [J]. Annals of Biomedical Engineering, 2012, 41(1): 205-214.
[6] Kim N, Homma K, Puria S. Inertial bone conduction: Symmetric and anti-symmetric components [J]. Journal of the Association for Research in Otolaryngology, 2011, 12(3): 261-279.
[7] Greenwood D D. A cochlear frequency-position function for several species-29 years later [J]. The Journal of the Acoustical Society of America, 1990, 87(6): 2592-2605.
[8] Gan R Z, Reeves B P, Wang X L. Modeling of sound transmission from ear canal to cochlea [J]. Annals of Biomedical Engineering, 2007, 35(12): 2180-2195.
[9] 刘后广, 塔娜, 饶柱石. 悬浮振子对中耳声传播特性影响的数值研究 [J]. 力学学报, 2010, 42(1): 109-114.
LIU Hou-guang, TA Na, RAO Zhu-shi. Numerical study on the effect of the floating mass transducer on middle ear sound transmission [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 109-114.
[10] Stieger C, Rosowski J J, Nakajima H H. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea [J]. Hearing Research, 2013, 301(0): 105-114.
[11] Nakajima H H, Dong W, Olson E S, et al. Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones [J]. Otology & Neurotology, 2010, 31(3): 506-511.
[12] Sun Q, Gan R Z, Chang K H, et al. Computer-integrated finite element modeling of human middle ear [J]. Biomechanics and Modeling in Mechanobiology, 2002, 1(2): 109-122.
[13] Kwacz M, Marek P, Borkowski P, et al. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery [J]. Biomechanics and Modeling in Mechanobiology, 2013: 1-19.
[14] Wang J, Zhao F, Li Y, et al. Effect of anterior tympanomeatal angle blunting on the middle ear transfer function using a finite element ear model [J]. Medical Engineering & Physics, 2011, 33(9): 1136-1146.
[15] Koike T, Wada H, Kobayashi T. Modeling of the human middle ear using the finite-element method [J]. The Journal of the Acoustical Society of America, 2002, 111: 1306.
[16] Gan R Z, Sun Q, Feng B, et al. Acoustic–structural coupled finite element analysis for sound transmission in human ear-Pressure distributions [J]. Medical Engineering & Physics, 2006, 28(5): 395-404.
[17] Zhang X, Gan R Z. Finite element modeling of energy absorbance in normal and disordered human ears [J]. Hearing research, 2012.
[18] Gan R Z, Yang F, Zhang X, et al. Mechanical properties of stapedial annular ligament [J]. Medical Engineering & Physics, 2011, 33(3): 330-339.
[19] Machiraju C, Phan A-V, Pearsall A, et al. Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model [J]. Computer Methods and Programs in Biomedicine, 2006, 83(1): 29-33.
[20] Park S, Schapery R. Methods of interconversion between linear viscoelastic material functions. Part I—A numerical method based on Prony series [J]. International Journal of Solids and Structures, 1999, 36(11): 1653-1675.
[21] Zhang X, Gan R Z. A comprehensive model of human ear for analysis of implantable hearing devices [J]. Biomedical Engineering, IEEE Transactions on, 2011, 58(10): 3024-3027.
[22] Zhang X, Gan R Z. Dynamic properties of human round window membrane in auditory frequencies running head: Dynamic properties of round window membrane [J]. Medical Engineering & Physics, 2013, 35(3): 310-318.
[23] Gan R Z, Wood M W, Dormer K J. Human middle ear transfer function measured by double laser interferometry system [J]. Otology & Neurotology, 2004, 25(4): 423-435.
[24] Wang X L, Hu Y J, Wang Z L, et al. Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device [J]. Hearing Research, 2011, 280(1): 48-57.
[25] Aibara R, Welsh J T, Puria S, et al. Human middle-ear sound transfer function and cochlear input impedance [J]. Hearing Research, 2001, 152(1): 100-109.
[26] Nakajima H H, Dong W, Olson E S, et al. Differential intracochlear sound pressure measurements in normal human temporal bones [J]. Journal of the Association for Research in Otolaryngology, 2009, 10(1): 23-36.
[27] Puria S, Peake W T, Rosowski J J. Sound-pressure measurements in the cochlear vestibule of human-cadaver ears [J]. The Journal of the Acoustical Society of America, 1997, 101(5): 2754-2770.
[28] 王学林. 蜗窗激励与外耳道激励产生的耳蜗压力差的比较分析 [J]. 生物医学工程学杂志, 2012, 29(006): 1109-1113.
WANG Xue-lin. Comparison of differential intracochlear pressures between round window stimulation and ear canal stimulation [J]. Journal of Biomedical Engineering. 2012, 29(006): 1109-1113.
[29] Zwislocki J. The role of the external and middle ear in sound transmission [J]. The Nervous System, 1975, 3: 45-55.
[30] Merchant S N, Ravicz M E, Rosowski J J. Acoustic input impedance of the stapes and cochlea in human temporal bones [J]. Hearing Research, 1996, 97(1): 30-45.
[31] Wang X, Wang L, Zhou J, et al. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 17(10): 1096-1107.
[32] Nakajima H H, Merchant S N, Rosowski J J. Performance considerations of prosthetic actuators for round-window stimulation [J]. Hearing Research, 2010, 263(1): 114-119.
[33] Gentil F, Parente M, Martins P, et al. The influence of muscles activation on the dynamical behaviour of the tympano-ossicular system of the middle ear [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16(4): 392-402.
[34] Aernouts J, Dirckx J J. Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus [J]. Biomechanics and Modeling in Mechanobiology, 2012, 11(6): 829-840.
[35] Aernouts J, Aerts J R, Dirckx J J. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements [J]. Hearing Research, 2012, 290(1): 45-54.

PDF(1743 KB)

Accesses

Citation

Detail

段落导航
相关文章

/