轴向运动层合薄壁圆柱壳内共振的数值分析

张宇飞1,3, 王延庆2, 闻邦椿3

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 82-86.

PDF(1589 KB)
PDF(1589 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 82-86.
论文

轴向运动层合薄壁圆柱壳内共振的数值分析

  • 张宇飞1,3,  王延庆2,  闻邦椿3
作者信息 +

ANALYSIS ON THE INTERNAL RESONANCE OF AXIALLY   MOVING LAMINATED THIN CYLINDRICAL SHELLS

  • Zhang Yu-Fei 1,3,Wang Yan-Qing 2, Wen Bang-Chun3
Author information +
文章历史 +

摘要

以轴向运动复合材料薄壁圆柱壳作为研究模型,考虑复合材料圆柱壳的弹性模量随其振动频率而变化(动态弹性模量),根据Donnell非线性扁壳理论及经典层合壳理论得到模型的非线性振动微分方程。采用包含四个广义模态坐标的位移展开式,利用Galerkin方法对振动微分方程进行离散化,然后应用变步长四阶Runge-Kutta法对非线性模态方程组进行数值积分,研究了复合材料圆柱壳的1:1:1:1内共振现象。最后讨论了圆柱壳的轴向运动速度、阻尼系数及外激励幅值对系统1:1:1:1内共振响应的作用。

Abstract

A thin composite circular cylindrical shell moving in axial direction is investigated in this paper. Based on Donnell’s nonlinear shallow-shell theory, together with classical laminated shell theory, nonlinear vibration equation of the system is derived, in which the effect of dynamic Young’s modulus, damping and geometric large-amplitude are considered. The modal expansion with four generalized coordinates is adopted, and the vibration equation is discretized by using the Galerkin method. Applying variable step-size four-order Runge-Kutta method, we solve the nonlinear modal equations of the system, and obtain nonlinear frequency-response curves, which show 1:1:1:1 internal resonance phenomenon in the system. At last, the effects of moving speed, damping coefficients and amplitudes of external force on the nonlinear vibration response of the shell are also investigated.
 

关键词

复合材料圆柱壳 / 动态弹性模量 / 内共振 / 轴向运动 / 响应

Key words

composite circular cylindrical shell / dynamic Young’s modulus / internal resonance / axially moving / response

引用本文

导出引用
张宇飞1,3, 王延庆2, 闻邦椿3. 轴向运动层合薄壁圆柱壳内共振的数值分析[J]. 振动与冲击, 2015, 34(22): 82-86
Zhang Yu-Fei 1,3,Wang Yan-Qing 2, Wen Bang-Chun3. ANALYSIS ON THE INTERNAL RESONANCE OF AXIALLY   MOVING LAMINATED THIN CYLINDRICAL SHELLS[J]. Journal of Vibration and Shock, 2015, 34(22): 82-86

参考文献

[1] Amabili, M, Pellicano F, Païdoussis M P. Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid. Journal of Fluids and Structures, 1998, 12(7): 883-918
[2] Wang Y Q, Guo X H, Li Y G, et al. Nonlinear traveling wave vibration of a circular cylindrical shell subjected to a moving concentrated harmonic force. Journal of Sound and Vibration, 2010, 329(3): 338-352
[3] Liu Y Q, Chu F L. Nonlinear vibrations of rotating thin circular cylindrical shell, Nonlinear Dynamics, 2012, 67: 1467-1479.
[4] Sun S P, Chu S M, Cao D Q. Vibration characteristics of thin rotating cylindrical shells with various boundary conditions, Journal of Sound and Vibration, 2012, 331: 4170-4186.
[5] Hua L, Lam K Y. Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method, International Journal of Mechanical Sciences, 1998, 40: 443-459.
[6] 李健,郭星辉,郭明涛等. 复合材料薄壁圆柱壳动态弹性模量的研究. 东北大学学报(自然科学版),2008,29(12): 1770-1773
(Li Jian, Guo Xinghui, Guo Mingtao et al. Analysis of dynamic elastic modulus of thin-wall cylindrical shells made from composites. Journal of Northeastern University(Natural Science), 2008, 29(12): 1770-1773(in Chinese))
[7] 王延庆, 梁力, 郭星辉, 杨坤. 基于多元 L-P 法的复合材料圆柱壳内共振分析, 工程力学, 2012, 29: 29-34.(Wang Yan-Qing,Liang Li,Guo Xing-Hui,Yang Kun. Analysis of internal resonance of composite circular cylindrical shells based on the multidimensional L-P method. Engineering Mechanics, 2012, 29: 29-34 (in Chinese))
[8] Wang Y Q, Liang L, Guo X H. Internal resonance of axially moving laminated circular cylindrical shells, Journal of Sound and Vibration, 2013, 332: 6434-6450.
[9] Wickert J A. Non-linear vibration of a traveling tensioned beam. International Journal of Non-Linear Mechanics, 1992, 27(3): 503-517
[10] Riedel C H, Tan C A. Coupled, forced response of an axially moving strip with internal resonance, International Journal of Non-Linear Mechanics, 2002, 37: 101-116
[11] 冯志华, 胡海岩. 内共振条件下直线运动梁的动力稳定性. 力学学报, 2002, 34 (3): 389–400. (Feng Zhihua, Hu Haiyan. Dynamic stability of a slender beam with internal resonance under a large linear motion. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34 (3): 389—400(in Chinese))
[12] Chen L Q, Yang X D, Cheng C J. Dynamic stability of an axially accelerating viscoelastic beam, European Journal of Mechanics A/ Solids, 2004, 23: 659-666
[13] 张伟, 温洪波, 姚明辉. 黏弹性传动带1:3 内共振时的周期和混沌运动. 力学学报, 2004, 36 ( 4): 443-454. ( Zhang W, Wen H B, Yao M H . Periodic and chaotic oscillation of a parametrically excited viscoelastic moving belt with 1:3 internal resonance, Chinese Journal of Theoretical and Applied Mechanics, 2004, 36 ( 4): 443-454 (in Chinese))
[14] 陈树辉, 黄建亮. 轴向运动梁非线性振动内共振研究. 力学学报, 2005, 37(1): 57-63(Chen Shuhui, Huang Jianliang. On internal resonance of nonlinear vibration of axially moving beams. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 57-63(in Chinese))
[15] Ding H, Chen L Q. Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams, Acta Mechanica Sinica, 2011, 27(3): 426-437.
[16] Yang X D, Chen L Q. Bifurcation and chaos of an axially accelerating viscoelastic beam, Chaos, Solitons & Fractals, 2005, 23: 249-258.
[17] 沈观林, 胡更开. 复合材料力学. 北京: 清华大学出版社. 2007
(Shen Guanlin, Hu Gengkai. Mechanics of Composite Materials. Beijing: Tsinghua University Press, 2007(in Chinese)

PDF(1589 KB)

780

Accesses

0

Citation

Detail

段落导航
相关文章

/