本文研究非自治微分动力系统周期吸引子受弱高斯白噪声扰动后的分布特性。基于频闪映射将微分动力系统离散为映射,通过求解映射系统周期吸引子的随机敏感度函数,构造置信椭圆来刻画随机吸引子的分布情况,从而避免了求解矩阵微分方程的边值问题,只需求解矩阵代数方程即可。研究了Duffing方程随机周期吸引子的分布情况,结果表明置信椭圆与Monte-Carlo模拟取得了很好的一致。最后对Duffing方程的噪声诱导混沌现象进行了定性研究,证明了通过随机敏感度函数可以揭示这类现象的机理。
Abstract
Distribution characters of periodic attractors in non-autonomous differential dynamical systems disturbed by weak Gaussian white noise were studied. Based on stroboscopic mapping, differential dynamical systems were discretized into maps. Through solving stochastic sensitivity functions of periodic attractors in maps, confidence ellipses were constructed to describe the distributions of the random attractors. In this way, boundary value problems of matrix differential equations were avoided, and only matrix algebra equations need to be solved. Distributions of stochastic periodic attractors in Duffing equation were studied. The results show that confidence ellipses achieved good agreement with the Monte-Carlo simulation. Finally, noise-induced chaos in Duffing equation was researched qualitatively, it was proven that stochastic sensitivity function can reveal the mechanism of this phenomenon.
关键词
随机敏感度函数 /
频闪映射 /
Duffing方程 /
噪声诱导混沌
{{custom_keyword}} /
Key words
stochastic sensitivity function /
stroboscopic map /
Duffing equation /
noise-induced chaos
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱位秋. 非线性随机动力学与控制:Hamilton理论体系框架[M]. 北京:科学出版社,2003.
[2] 徐伟. 非线性随机动力学的若干数值方法及应用[M]. 北京:科学出版社,2013.
[3] 刘章军,李杰. 基于概率密度演化理论的结构抗震可靠性分
LIU Zhang-jun, LI Jie. A seismatic reliability analysis of nonlinear structures based on probability density evolution method[J]. Journal of Vibration and Shock, 2009, 28(9): 1-4.
[4] 高喆,秦卫阳,梁晓鹏等. 碰摩转子-轴承系统的随机分岔与混沌特性分析[J]. 振动与冲击,2013,32(20):161-164.
GAO Zhe, QIN Wei-yang, LIANG Xiao-peng, et al. Stochastic bifurcation and chaos analysis of a rub-impact rotor-bearing system. [J]. Journal of Vibration and Shock, 2013,32(20):161-164.
[5] 杨晓丽,孙中奎. 关于非自治Duffing-Van Der Pol混沌系统完全同步的研究[J]. 振动与冲击,2010,29(11):131-134.
Research on complete synchronization of non-autonomous
chaotic Duffing-Van Der Pol systems. [J]. Journal of Vibration and Shock, 2010,29(11):131-134.
[6] Bashkirtseva I A, Ryashko L B. Stochastic sensitivity of 3D-cycles[J]. Mathematics and Computers in Simulation, 2004, 66(1):55-67.
[7] Bashkirtseva I A, Ryashko L B. Constructive analysis of noise-induced transitions for coexisting periodic attractors of the Lorenz model[J]. Physical Review E, 2009, 79(4):041106.
[8] Bashkirtseva I A, Ryashko L B, Tsvetkov I N. Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems[J]. Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 2010 ,17:501-515.
[9] Hsu C S. Cell-to-cell Mapping: A Method of Global Analysis for Nonlinear Systems[M]. Berlin:Springer,1987.
[10] Dennis B, Desharnais R A, Cushing J M, et al. Can noise induce chaos?[J] OIKOS,2003,102:329-339.
[11] Jiang J, An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J].Chinese Physics Letters, 2012,29(5):050503.
[12] Tél T, Lai Y C, Gruiz M. Noise-induced chaos: a consequence of long deterministic transients[J]. International Journal of Bifurcation and Chaos, 2008, 18(2):509-520
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}