内圈故障滚动轴承系统周期运动的倍化分岔

王强 1,刘永葆 1,2,徐慧东 3,贺星 1,刘树勇 1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 136-142.

PDF(2700 KB)
PDF(2700 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 136-142.
论文

内圈故障滚动轴承系统周期运动的倍化分岔

  • 王强 1,刘永葆 1,2,徐慧东 3,贺星 1,刘树勇 1
作者信息 +

Period-Doubling Bifurcation of Rolling Bearing System with Fault in Inner Ring

  •   WANG Qiang1,LIU Yong-bao1,XU Hui-dong2,HE Xing1,LIU Shu-yong1
Author information +
文章历史 +

摘要

本文针对轴承内圈破损故障,建立轴承三自由度分段非光滑的故障模型,研究内圈故障滚动轴承系统周期运动的倍化分岔现象和混沌行为。求出系统的切换矩阵后,将得到的切换矩阵结合光滑系统的 Floquet 理论来分析轴承非光滑系统周期运动发生倍化分岔的条件。通过在碰撞面处建立Poincaré映射,用数值方法进一步揭示轴承系统的周期运动经倍化分岔通向混沌的现象。结果表明,当旋转频率接近临界分岔点时,系统有1个Floquet特征乘子接近-1,系统发生周期倍化分岔,随着旋转频率的增加,系统经历了周期二解的Nermark-Sacker分岔,随后又经历了多周期、混沌等复杂的非线性行为。对该故障轴承系统分岔和混沌的研究,可为大型高速旋转机械的安全稳定运行提供可靠的设计与故障诊断依据,也为实际设计时提供理论指导和技术支持。

Abstract

 Piecewise non-smooth model of three-degree-of-freedom rolling bearing system with fault in inner Ring is established. The period-doubling bifurcation and chaos of  bearing system is studied in this paper. After the switch matrixes of system are obtained, the period-doubling  bifurcation condition of non-smooth bearing system is analyzed by combining the switching matrixes with the Floquet theory for smooth systems. The numerical method is used to further reveal the period-doubling bifurcation and chaos of bearing system through estabilshing the Poincare mapping on the collision plane. The results show that when the rotating frequency is close to critical bifurcation point, one of  Floquet multipliers of the system is close to -1, and the period-doubling bifurcation appears. With the increase of rotating frequency, the system has experienced the Nermark-Sacker bifurcation of period 2 solution, and then experienced more complex nonlinear behaviors such as multi-period solutions and chaos. The study of bifurcation and chaos of the fault bearing system provides reliable basis for the design and fault diagnosis and provides theoretical guidance and technical support for the actual design  in  the safe and stable operation of large high-speed rotating machinery.

关键词

轴承 / Floquet 理论 / 倍化分岔 / 混沌

Key words

Bearing;  / Floquet theory;  / Period-doubling bifurcation;  / Chaos

引用本文

导出引用
王强 1,刘永葆 1,2,徐慧东 3,贺星 1,刘树勇 1. 内圈故障滚动轴承系统周期运动的倍化分岔[J]. 振动与冲击, 2015, 34(23): 136-142
WANG Qiang1,LIU Yong-bao1,XU Hui-dong2,HE Xing1,LIU Shu-yong1. Period-Doubling Bifurcation of Rolling Bearing System with Fault in Inner Ring[J]. Journal of Vibration and Shock, 2015, 34(23): 136-142

参考文献

[1]关贞珍,郑海起,王彦刚,杨杰. 滚动轴承局部损伤故障动力学建模及仿真[J]. 振动、测试与诊断,2012,32(6):950-956.
GUAN Zhen-zhen,ZHENG Hai-qi,WANG Yan-gang,YANG Jie. Fault dynamic modeling and simulating of rolling bearing with localized defect[J].Journal of Vibration,Measurement& Diagnosis,2012,32(6):950-956.
[2]张建军,王仲生,芦玉华,丁蓬勃.基于非线性动力学的滚动轴承故障工程建模与分析[J]振动与冲击, 2009,29(11):30-34.
ZHANG Jian-jun,WANG Zhong-sheng,LU Yu-hua,DING Peng-bo.Nonlinear dynamic modeling for localized defects in a rolling element bearing[J].Journal of Vibration and Shock,2009,29(11):30-34.
[3]朱永生,袁幸,张优云,朱川峰,周智.滚动轴承复合故障振动建模及Lempel-Ziv复杂度评价[J].振动与冲击,2013,32(16):23-29.
ZHU Yong-sheng,YUAN Xing,ZHANG You-yun,ZHU Chuan-feng,ZHOU zhi.Vibration modeling of rolling bearings considering compound multi-defect and appraisal with Lempel-Ziv complexity[J].Journal of Vibration and Shock,2013,32(16):23-29.
[4]曹宏瑞,牛蔺楷,何正嘉.高速主轴轴承损伤建模与振动响应仿真研究[J]振动与冲击,2012,31(S):241-244
CAO Hong-rui, NIU Lin-kai,HE Zheng-jia.Bearing defects modelling and vibration response simulation of high-speed spindle systems[J].Journal of vibration and shock.2012,Vol.31,No.S:241-244.
[5]Luo A C J.The mapping dynamics of periodic motions for a three piecewise linear system under a periodic excitation.Journal of Sound and Vibration,2005,283:723-748.
[6]Luo A C J,Che L.Periodic motions and grazing in a harmonically forced,piecewise,linear oscillator with impacts.Chaos,Solitons and Fractals,2005,24:567-578.
[7]Ji J C,Hansen C H.Analytical approximation of the primary resonance response of a periodically excited piecewise nonlinear-linear oscillator.Journal of Sound and Vibration,2004,278:327-342.
[8]Guckenheimer J,Holmes P.Nonlinear oscillations,dynamical systems,and bifurcations ofvector fields.New York:Springer-Verlag,1983.
[9]Yoshitake Y,Sueoka A。Forced self-exited vibration accompanied by dry friction,In Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities,(Edited by. Wiercigroch and A. de Kraker),World Scientific  (to appear).
[10]Yoshitake Y,Sueoka A.Shoji N,et a1.Vibrations of nonlinear systems with discontinuities.The case of the preloaded compliance system.Japan Society Mechanical Engineering(JSME)Series 1 997,C 4 1(4):7 1 0—7 1 7.
[11]Peterka E Bifurcation and transition phenomena in an impact oscillator.Chaos,Solitons and Fractals,1996,7(10): 1635-1647.
[12]Kleczka M et a1.Nonlinear Dynamics in Engineering Systems(Ed.By Schiehlen ). Springer-Verlag, 1990,141-148.
[13]Leine R I,Nijmeijer H.Dynamics and Bifurcation of Non-Smooth Mechanical Systems.Berlin;Springer,2004:101-1 18.
[14]曹登庆, 初世明, 李郑发, 刘荣强. 空间可展机构非光滑力学模型和动力学研究[J].力学学报, 2013,1: 3-15.
CAO Deng-qing,CHU Shi-ming,LI Zheng-fa,LIU Rong-qiang.Study on the non-smooth mechanical models and dynamics for space deployable mechanisms[J].Chinese Journal of Theoretical and Applied Mechanics, 2013,1: 3-15.
[15]秦志英,陆启韶. 非光滑分岔的映射分析[J]. 振动与冲击, 2009 ,6: 79-82.
QIN Zhi-ying,LU Qi-shao. Map analysis for non-smooth bifurcations[J]. Journal of Vibration and Shock, 2009 ,6: 79-82.
[16]罗冠炜,张艳龙,谢建华. 含对称刚性约束振动系统的周期运动和分岔[J]. 工程力学,2007,24(7): 44-53.
LUO Guan-wei,ZHANG Yan-long,XIE Jian-hua.Periodic-impact motions and bifurcations of vibratory systems with symmetrical rigid constraints.Engineering Mechanics, 2007,24(7): 44-53.
[17]R.I. Leine and  H. Nijmeijer, Dynamics and Bifurcation of Non-Smooth Mechanical Systems[M].Berlin; Springer,2004:101-118

PDF(2700 KB)

Accesses

Citation

Detail

段落导航
相关文章

/