结构尺寸对二级节流阀空化流动特性的影响

刘秀梅1,2,3,贺杰1,龙正1,李文华1,李贝贝1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 143-148.

PDF(2331 KB)
PDF(2331 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 143-148.
论文

结构尺寸对二级节流阀空化流动特性的影响

  • 刘秀梅1,2,3,贺杰1,龙正1,李文华1,李贝贝1
作者信息 +

Research on the effects of structural shape on characteristics of cavitating flows in two-step throttle

  • Liu Xiumei1, 2, 3,He Jie1, Long Zheng1, Li Wenhua1, Li Beibei1
Author information +
文章历史 +

摘要

节流阀口的形式以及结构尺寸直接影响节流阀的性能,因此阀口结构形式选择及其设计是很重要的。本文通过数值模拟的方法研究了二级节流口尺寸不同对阀内空化流场、流速以及空化区域的影响。研究结果表明:二级节流阀内上游腔的拐角处、二级节流口中间腔的近壁面区域、阀芯的顶部、节流口下游的近壁面区域存在四个回流区。随着阀口尺寸m、n的改变,阀内回流区位置几乎不变,但是回流区面积大小会发生改变。但是 m=2,n=1时二级节流阀具有较好的抗空蚀特性。本文的研究结果为工程人员设计高性能液压阀提供了一定的理论依据。

Abstract

The shape and structure size of throttle valve port have a direct impact on the characteristics of cavitating flow in two-step throttle, so it is important to choose and design the right shape of the throttle valve port. This paper investigated cavitation flow, velocity and the cavitation area in throttle valve with different port size using CFD, for selecting the best combination of port size and choke size. The numerical results show that: there were four vortexes located in upstream of the channel flow channel, the wall of the middle section of two-port valves, the top of valve rod, and downstream of the channel flow channel. With the change of port size m, n, the position of vortex in two-step valve were almost the same, but their area would change. However, if m=2, n=1, the two-step throttle would have the best structure with the purpose of anti-cavitation valve. The results of this paper can provide some theory for engineers to design a high-performance throttle valve.

关键词

节流阀 / 阀口 / 开度 / 阀口尺寸

Key words

Throttle valve / Valve port / Opening / Valve port size

引用本文

导出引用
刘秀梅1,2,3,贺杰1,龙正1,李文华1,李贝贝1. 结构尺寸对二级节流阀空化流动特性的影响[J]. 振动与冲击, 2015, 34(23): 143-148
Liu Xiumei1, 2, 3,He Jie1, Long Zheng1, Li Wenhua1, Li Beibei1. Research on the effects of structural shape on characteristics of cavitating flows in two-step throttle[J]. Journal of Vibration and Shock, 2015, 34(23): 143-148

参考文献

[1] 金岩,郝志勇. 针对通过噪声的空滤器声学特性研究与改进[J]. 浙江大学学报:工学版,2006, 40(8):1143-1145.
Jin Y, Hao Z Y. Investigation and improvement of air-in filter acoustic performance towards pass-by noise [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(8): 1143-1145.
[2] 张德胜,施卫东,潘大志,曹卫东,李通通.基于数值模拟的特种混流泵水力性能优化与试验[J].机械工程学报,2014,6:177-184
Zhang D S, Shi W D, Pan D Z, Cao W D, Li T T. Hydralic performance optimization and experiment of special mixed-flow pump based on numerical simulation. Journal of mechanical engineering[J],2014,6:177-184.
[3]王松林,谭磊,王玉川.离心泵瞬态空化流动及压力脉动特性[J].振动与冲击,2013,32(22):168-173.
Wang S L, Tan L, Wang Y C.Characteristics of transient cavitation flow and pressure fluctuation for a centrifugal pump[J].Journal of Vibration and Shock,2013,32(22):168-173. 
[4] Oshima S, Leino T, Linjama M, Koskinen, K T, Vilenius, M J. Effect of cavitation in water hydraulic poppet valves [J].Fluid power. 2001,2(3): 5-13.
[5] Masjedian Jazi A, Rahimzadeh H. Detecting cavitation in globe valves by two methods: Characteristic diagrams and acoustic analysis[J]. Applied Acoustics, 2009, 70(11): 1440-1445.
[6] Casoli P, Vacca A, Berta GL. A numerical procedure for predicting the performance of high pressure homogenizing valves[J]. Simul Modell Practice Theory, 2010;18(2):125–38.
[7] Chern, M., Hsu, P., Cheng, Y., Tseng, P., Hu, C. Numerical Study on Cavitation Occurrence in Globe Valve[J]. J. Energy Eng., 2013,139(1), 25–34.
[8] Valdés J R, Rodríguez J M, Monge R, Pena J C, Pütz T. Numerical simulation and experimental validation of the cavitating flow through a ball check valve. Energy Conversion and Management[J]. Energy Conversion and Management, 2014,78:776–786.
[9] Tabrizi A S, Asadi M, Xie G, Lorenzini G, Biserni C. Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation[J]. Journal of Engineering Thermophysics, 2014, 23(1): 27-38.
A.S. Tabrizi, M.Asadi, G.Xie,. Computational fluid-Dynamics-Based Analysis of a Ball Valve Performance in the
[10] 高红.溢流阀阀口气穴与气穴噪声的研究[D].杭州:浙江大学,2003
Gao H.The study on cavitation near the orifice of relief valve and cavitation induced noise [D]. Hang Zhou: ZhengJiang University,2003.
[11] 偶国富,饶杰,章利特,郑智剑,叶健,煤液化高压差调节阀空蚀/冲蚀磨损预测[J].摩擦学学报,2013,33(2):155-161.
Ou G F, Rao J, Zhang L T, et al. Numerical investigation of cavitation erosion/solid particle erosion in high differential pressure control valves in coal liquefaction[J]. 2013, 33(2):155-161.
[12] 刘银水,杨友胜,朱玉泉,李壮云,以水为介质阻尼孔气穴流动理论和实验研究,机械工程学报,2007,43(2):147-150.
Liu yinshui, yang yousheng, zhu yuquan, li zhuangyun. Theoretical and experimental research on cavitation flow of orifices using water as working media. Chinese Journal of Mechanical Engineering, 2007,43(2):147-150.
[13]杨友胜,张铁华,贺小峰,李壮云. 一种新型圆锥式节流阀口的特性分析[J]. 机床与液压,2002,02:113-114.
Yang Y S, Zhang T H, He X F,Li Z Y.analysis of a novel conical throttle’s characterisatics[J]. Machine Tool & Hydraulics ,2002,02:113-114.
[14]聂松林,杨友胜,朱玉泉, 李壮云. 二级节流中间区域压力分布及其刚度特性分析[J].液压与气动.2005(8):9-11.
Nie S L,Yang Y S,ZHU Y Q, Li Z Y. Research on the Pressure Distribution between the Two Throttles of Two-step Throttle and its Load Rigidity Characteristics [J]. Hydraulics & Pneumatics, 2005(8):9-11.
[15] 陈庆光,吴玉林,刘树红,等. 轴流式水轮机全流道内非定常空化湍流的数值模拟, 机械工程学报,2006,42(6): 211-216.
Chen Qingguang, Wu yulin, Liu shuhong, Wu Shangfeng, Zhang Yongjian, Wang Tao. Numerical simulation of unsteady cavitation turbulent flow in the whole flow passage of a kaplan turbine. Chinese Journal of Mechanical Engineering, 2006, 42(6): 211-216.
[16] 龙正,刘秀梅,李贝贝,等.节流阀小开度下空化特性的数值分析[J],制造业自动化,2014,36(4):56-58
Long z, Liu x m, Li b b, et al. Numerical Simulation and Analysis on Cavitation Property at Small Opening of Throttle Valve[J], Manufacturing automation, 2014, 36(4): 56-58
[17] 黄继汤.空化与空蚀的原理与应用[M].北京:清华大学出版社,1991,1-2
Huang Ji-tang.Principles and Applications of Cavitation and Cavitation Erosion[M].Beijing:Tsinghua University Press,1991,1-2.

PDF(2331 KB)

632

Accesses

0

Citation

Detail

段落导航
相关文章

/