在实际的悬架系统主动控制当中,由于控制器存在时变时滞因素,而低频输入时滞对系统的稳定性及性能有很大影响。针对该问题,综合考虑系统的参数不确定性及执行器的时变时滞因素,使车身加速度在路面干扰下的H∞范数在全频域内达到最小,同时保证控制力的非线性饱和,行驶平顺性,接地性等时域硬约束条件,设计了基于动态输出反馈的鲁棒H∞控制器,并提出一种描述质量不确定性的匹配模型。采用Lyapunov-Krasovskii泛函法,通过引入松弛矩阵给出满足条件的凸组合不等式,减少了设计的保守性,应用LMI技术推导出H∞控制准则。最后,通过数值实例验证了该方法对于参数摄动下的低频时变时滞悬架系统控制性能的有效性。
Abstract
In the actual active suspension systems, the controller has time-varying delay, and low frequency time-varying delay has a great influence on the stability and performance of the system. For this problem, the system with time-varying structured uncertainties and time-varying delay are considered, and we choose the body acceleration as performance output, the H∞ norm from the disturbance to the controlled output is decreased in entire frequency band to improve the ride comfort. In addition, a norm-bounded parameter uncertainties model is introduced, the time-domain hard constraints for actuator saturation ,suspension stroke, road holding are guaranteed in the robust H∞ dynamic output feedback controller design. Based on the Lyapunov-Krasovskii functional approach, a convex combination of the matrices is derived by introducing some relaxation matrices that can be used to reduce the conservatism of the criteria, H∞ control criteria are obtained in terms of Linear Matrix Inequalities(LMIs). Finally, numerical examples are given to demonstrate the effectiveness of the proposed method for suspension system with time-varying parameter and low frequency delay.
关键词
低频时变时滞;主动悬架;H&infin /
控制;动态输出反馈;线性矩阵不等式
{{custom_keyword}} /
Key words
low frequency time-varying delay /
active suspensions /
H&infin /
control /
dynamic output feedback /
linear matrix inequality
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙维超. 汽车悬架系统的主动振动控制[D]. 哈尔滨工业大学,2013.
SUN Wei-chao. Active vibration control for vehicle suspension systems[D]. Harbin Institute of Technology, 2013.
[2] CHEN H, GUO K H. Constrained H∞ control of active suspensions: an LMI approach[J]. IEEE Transactions on Control Systems Technology, 2005, 13(3): 412-421.
[3] 李荣, 焦晓红, 杨超. 基于动态输出反馈的半车主动悬架系统鲁棒控制[J]. 振动与冲击,2014, 33(7): 187-193.
LI Rong, JIAO Xiao-hong, Yang Chao. Output feedback-based robust control for a half-car hydraulic active suspension system[J]. Journal of vibration and shock, 2014, 33(7): 187-193.
[4] LI P, LAM J, CHEUNG K C. Multi-objective control for active vehicle suspension with wheelbase preview[J]. Journal of Sound and Vibration, 2014, 333(21): 5269-5282.
[5] GUO L X, ZHANG L P. Robust H∞ control of active vehicle suspension under non-stationary running[J]. Journal of Sound and Vibration, 2012, 331(26): 5824-5837.
[6] LI P, LAM J, CHEUNG K C. Velocity-dependent multi-objective control of vehicle suspension with preview measurements[J]. Mechatronics, 2014, 24(5): 464-475.
[7] WANG R, JING H, YAN F, et al. Optimization and finite-frequency H∞ control of active suspensions in in-wheel motor driven electric ground vehicles[J]. Journal of the Franklin Institute, 2015, 352(2): 468-484.
[8] SUN W, GAO H, KAYNAK O. Finite frequency control for vehicle active suspension systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(2): 416-422.
[9] SUN W, LI J, ZHAO Y, et al. Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic[J]. Mechatronics, 2011, 21(1): 250-260.
[10] DU H, ZHANG N. H∞ control of active vehicle suspensions with actuator time delay[J]. Journal of sound and vibration, 2007, 301(1-2): 236-252.
[11] SUN W, ZHAO Y, LI J, et al. Active suspension control with frequency band constraints and actuator input delay[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 530-537.
[12] ZHAO Y, SUN W, GAO H. Robust control synthesis for seat suspension systems with actuator saturation and time-varying input delay[J]. Journal of Sound and Vibration, 2010, 329(21): 4335-4353.
[13] LI H, JING X, KARIMI H R. Output-feedback-based H∞ control for vehicle suspension systems with control delay[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 436-446.
[14] HE Y, WANG Q G, LIN C, et al. Delay-range-dependent stability for systems with time-varying delay[J]. Automatica, 2007, 43(2): 371-376.
[15] JIANG X, HAN Q L. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay[J]. Automatica, 2006, 42(6): 1059-1065.
[16] PARK P G, KO J W. Stability and robust stability for systems with a time-varying delay[J]. Automatica, 2007, 43(10): 1855-1858.
[17] WU M, HE Y, SHE J H, et al. Delay-dependent criteria for robust stability of time-varying delay systems[J]. Automatica, 2004, 40(8): 1435-1439.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}