研究旋转水平轴风力机叶片周期时变气弹系统的经典颤振稳定性特性。叶片结构采用了具有挥舞和扭转耦合的典型界面振动模型,引入Beddoes-Leishman气动模型为旋转叶片提供低攻角处周期时变的非定常气动力。为了研究颤振边界,利用标量风速和挥舞/扭转固有频率比对所建立的旋转叶片气弹模型进行变型。在此基础上,通过时域响应曲线分析旋转叶片挥舞自由度和扭转自由度气弹稳定性特性,分析了标量速度,叶片刚度,挥舞/扭转固有频率比和结构阻尼的影响,揭示了旋转叶片经典颤振边界的变化规律且其准确性得到验证。
Abstract
Aeroelastic characteristic of the rotating horizontal axis wind turbine blade is studied for classic flutter. The structural model of the blade is a classic vibration system, with two degree of freedom (flapwise and torsional blade oscillation), and periodic time-varying aerodynamic loads offered by Beddoes-Leishman dynamic model at the low angel of attack. The normalized structural model, is used to analyzed the effect of normalized wind velocity, blade stiffness, ratio between flapwise and torsional natural frequencies and blade damping on the aeroelastic stability of the rotating blade. The flutter boundary is found to reveal the characteristics of classic flutter of the rotating blade.
关键词
旋转风机叶片 /
经典颤振 /
Beddoes-Leishman
{{custom_keyword}} /
Key words
rotating wind turbine blade /
classic flutter /
Beddoes-Leishman
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙丽萍,王昊,丁娇娇. 风力发电机叶片的气动弹性及颤振研究综述[J]. 液压与气动,2012, (10):1-5.
SUN Li-ping,WANG Hao,DING Jiao-jiao. A summery on the aeroelasticity and flutter of wind turbine blade [J]. Journal of Chinese Hydraulics and Pneumatics, 2012, (10):1-5.
[2] Reddy, K. K., Chen J. and Behal, A., Multi-Input/Multi-Output Adaptive Output Feedback Control Design for Aeroelastic Vibration Suppression [J], Journal of Guidance, Control, and Dynamics, 2007, 30(4):1040-1048.
[3] Kukreja, S., Non-linear System Identification for Aeroelastic Systems with Application to Experimental Data, NASA TM- 214641, 2008.
[4] McEver, M. A., Ardelean, E. V. and Cole, D. G. , Active Control and Closed-Loop Identification of Flutter Instability in Typical Section Airfoil [J], Journal of Guidance, Control, and Dynamics, 2007,30(3):733-740.
[5] 任勇生,张明辉. 水平轴风力机叶片的弯扭耦合气弹稳定性研究[J]. 振动与冲击,2010, 29(7): 196-200.
REN Yong-sheng, ZHANG Ming-hui. Aeroelastic stability of a horizontal axis wind turbine blade with bending-torsion coupled [J]. Journal of vibration and shock, 2010, 29(7): 196-200.
[6] Kallesoe B.S., A low-order model for analysing effects of blade fatigue load control [J], Wind Energy, 2006, (9): 421-436.
[7] Park J. H., Park H.Y., Jeong S.Y. and ect. Linear vibration analysis of rotating wind-turbine blade [J]. Current Applied Physics ,2010, 10(2):332-334.
[8] 莫文威,李德源等. 水平轴风力机柔性叶片多体动力学建模与动力特性分析[J]. 振动与冲击,2013, 32(22): 99-105.
MO Wen-wei, LI De-yuan. Multibody dynamic modeling and dynamic characteristics analysis of flexible blades for a horizontal axis wind turbine [J]. Journal of vibration and shock, 2013, 32(22): 99-105.
[9] 王丹,陈予恕等. 两自由度弯曲耦合涡轮机械叶片动力学分析[J]. 振动与冲击,2014, 33(7): 199-204.
WANG Dan, CHEN Yu-shu. Dynamic analysis of a 2-DOF turbomachine blade with coupling of bending and torsion [J]. Journal of vibration and shock, 2014, 33(7): 199-204.
[10] Bruining A., Timmer W. A., Airfoil characteristics of rotating wind turbine blades [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 39(3):35-39.
[11] Hansen, M. H., Gaunaa, M. and Madsen, H. A., A Beddoes-Leishman Type dynamic stall model in state-space and indicial formulations [R]. Riso National Laboratory, Denmark, 2004.
[12] Mahajan A.J., Kaza K.R.V., Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter [J], Journal of Fluids and Structures, 1993, (7):87-103.
[13] Galvanetto U., Peiro J., An assessment of some effects of the nonsmoothness of the Leishman-Beddoes dynamic stall model on the nonlinear dynamics of a typical aerofoil section [J], Journal of Fluids and Structures, 2008,(24):151-163.
[14] Thoedorsen T., Garrick I.E., Mechanism of flutter, a theoretical and experimental investigation of the flutter problem [R]. NACA Report 685, 1940.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}