基于CEEMD和排列熵的故障数据小波阈值降噪方法

周涛涛1,2,朱显明1,2,彭伟才1,2,刘彦1,2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 207-211.

PDF(2055 KB)
PDF(2055 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 207-211.
论文

基于CEEMD和排列熵的故障数据小波阈值降噪方法

作者信息 +

  Awavelet threshold denoising method for fault data based on CEEMD and Permutation Entropy

Author information +
文章历史 +

摘要

 
针对旋转机械故障数据的非平稳性及总体平均经验模态分解方法(CEEMD)舍弃高频分量降噪方法和小波阈值降噪方法存在的不足,提出了基于CEEMD和排列熵的小波阈值降噪方法。运用CEEMD将信号分解为一系列的固有模态函数(IMF)分量,利用排列熵来确定含有噪声成分较多的IMF分量,采用小波阈值降噪方法对含有较多噪声成分的IMF分量进行降噪处理,保留这些分量中的有效信息。仿真分析和实例分析表明,基于CEEMD和排列熵的小波阈值降噪方法效果优于单纯的CEEMD降噪方法和小波阈值降噪方法。

Abstract

 
Considering the non-stationary of rolling machinery fault data, the wavelet threshold denoising method based on CEEMD and Permutation Entropy (PE)is proposed to cover the shortage of Complementary Ensemble Empirical Mode Decomposition (CEEMD) denoising method and wavelet threshold denoising method. CEEMD is used to decompose signals into a series of IMF components, the Permutation Entropy is presentedto evaluate noise contained in each IMF component, and wavelet threshold method is adopted for IMF components containingmuch noise for denoising, in order to retain the useful information of these components. The test results ofsimulation data and experimental data show that, the wavelet threshold denoising method based on CEEMD and PE is better than pure CEEMD denoising method and the wavelet threshold denoising method.

引用本文

导出引用
周涛涛1,2,朱显明1,2,彭伟才1,2,刘彦1,2. 基于CEEMD和排列熵的故障数据小波阈值降噪方法[J]. 振动与冲击, 2015, 34(23): 207-211
Taotao Zhou1,2, Xianming Zhu1,2, Weicai Peng1,2, Yan Liu1,2.   Awavelet threshold denoising method for fault data based on CEEMD and Permutation Entropy[J]. Journal of Vibration and Shock, 2015, 34(23): 207-211

PDF(2055 KB)

Accesses

Citation

Detail

段落导航
相关文章

/