基于局域均值分解的自适应滤波滚动轴承故障特征提取

张 焱1,汤宝平1,邓 蕾1,颜丙生2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 25-30.

PDF(2283 KB)
PDF(2283 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 25-30.
论文

基于局域均值分解的自适应滤波滚动轴承故障特征提取

  • 张 焱1,汤宝平1,邓 蕾1,颜丙生2
作者信息 +

Feature extraction for rolling bearing based on adaptive wavelet filter

  • ZHANG Yan1,TANG Bao-ping1,DENG Lei1,YAN Bin-sheng2
Author information +
文章历史 +

摘要

依据小波变换带通滤波特性和相关分析提出一种滚动轴承故障特征提取新方法。针对带通滤波器参数难以快速自适应选取的问题,提出利用局域均值分解(Local Mean Decomposition,LMD)所得乘积函数(production function,PF)的统计特征快速设定滤波器中心频率,通过分析滤波信号小波系数谱改进Shannon熵与滤波器带宽参数间的关系给出滤波器带宽参数优化策略。对仿真信号和内外圈故障轴承信号的分析结果表明,该方法能自适应优化小波滤波器参数,有效提取滚动轴承冲击性故障特征。

Abstract

A new method based on the filter characteristics of wavelet transform and autocorrelation analysis is proposed for feature extraction form rolling bearing vibration signal. Aiming at the wavelet parameter optimization problem, local mean decomposition is used to produce appropriate production functions (PFs), and the center frequency of the wavelet filter is then adaptively and efficiently determined using the PFs which takes advantage of the statistical information contained within them. The bandwidth of the wavelet filter is optimized according to the relationship between the modified Shannon entropy of the filtered signal and the filter bandwidth. The analysis results of the experimental signal and rolling bearing vibration signal with inner-race and outer-race faults show that the filter parameters can be optimized adaptively, and the fault feature of rolling bearing can be extracted by the proposed method.

关键词

特征提取 / 小波滤波 / 局域均值分解 / Shannon熵

Key words

feature extraction / wavelet filtering / local mean decomposition / Shannon entropy

引用本文

导出引用
张 焱1,汤宝平1,邓 蕾1,颜丙生2. 基于局域均值分解的自适应滤波滚动轴承故障特征提取[J]. 振动与冲击, 2015, 34(23): 25-30
ZHANG Yan1,TANG Bao-ping1,DENG Lei1,YAN Bin-sheng2. Feature extraction for rolling bearing based on adaptive wavelet filter[J]. Journal of Vibration and Shock, 2015, 34(23): 25-30

参考文献

[1] Feng Z P, Liang M, Chu F L. Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1):165-205.
[2] 李慧梅,安钢,黄梦. 基于局部均值分解的边际谱在滚动轴承故障诊断中的应用[J]. 振动与冲击,2014, 33(3): 5-8.
 LI Hui-mei, AN Gang, HUANG Meng. Application of marginal spectrum based on local mean decomposition in rolling bearing fault diagnosis [J]. Journal of Vibration and Shock, 2014, 33(3): 5-8.
[3] Jiang Y H, Tang B P, Qin Y, et al. Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD [J]. Renewable Energy, 2011, 36(8):2146–2153.
[4] Liu W Y, Han J G. The optimal Mexican hat wavelet filter de-noising method based on cross-validation method [J]. Neurocomputing, 2013, 108:31-35.
[5] Liu H Y, Huang W G., Wang S B, et al. Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection [J]. Signal Processing, 2014, 96:118-124.
[6] Bozchalooi I S, Liang M. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectablity of bearing fault signals [J]. Mechanical Systems and Signal Processing, 2008, 22(4):915–933.
[7] T. Barszcz, Adam Jabłoński. A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram, Mechanical Systems and Signal Processing. 25(2011)431-451.
[8] Su W S, Wang F T, Zhu H, et al. Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement [J]. Mechanical Systems and Signal Processing, 2009, 23(5):1509–1517.
[9] Tse P W., Wang D. The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection [J]. Mechanical Systems and Signal Processing, 2013, 40(2):520-544.
[10] Wang D, Guo W, Wang X J. A joint sparse wavelet coefficient extraction and adaptive noise reduction method in recovery of weak bearing fault features from a multi-component signal mixture [J]. Applied Soft Computing, 2013,13(10):4097–4104.
[11] W. He, Z.N. Jiang, K. Feng. Bearing fault detection based on optimal wavelet filter and sparse code shrinkage, Measurement. 42(2009)1092-1102.
[12] SMITH J S. The local mean decomposition and its application to EEG perception data [J]. Journa of the Royal Soc iety Interface. 2005, 2(5):443-454.
[13] 程军圣,杨怡,杨宇. 基于LMD的谱峭度方法在齿轮故障诊断中的应用[J]. 振动与冲击, 2012, 31(18):20-23.
 CHENG Jun-sheng, YANG Yi, YANG Yu. Application of spectral kurtosis approach based on local mean decomposition (LMD) in gear fault diagnosis [J]. Journal of Vibration and Shock, 2012, 31(18): 20-23.
[14] Rafiee J, TSE P W. Use of autocorrelation of wavelet coefficients for fault diagnosis [J]. Mechanical Systems and Signal Processing, 2009, 23(5):1554–1572.
 

PDF(2283 KB)

Accesses

Citation

Detail

段落导航
相关文章

/