橡胶材料的一种五参数分数导数模型

赵永玲1,侯之超1,黄友剑2,刘建勋1,2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 37-41.

PDF(1717 KB)
PDF(1717 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 37-41.
论文

橡胶材料的一种五参数分数导数模型

  • 赵永玲1,侯之超1,黄友剑2,刘建勋1,2
作者信息 +

A fractional derivative model with five parameters for rubber materials

  • ZHAO Yong-ling1, HOU Zhi-chao1,HUANG You-jian2,LIU Jian-xun2
Author information +
文章历史 +

摘要

通过在分数导数Zener模型中增加Scott-Blair粘壶,建立了一种新的五参数分数导数模型。分析了分数导数算子参数对Cole-Cole曲线形状的影响。基于某隔振橡胶材料的DMA实验,应用温-频等效原理获得了该材料的动态模量和损耗因子的主曲线,并识别了新建模型的全部参数。结果表明,该模型能够比较准确地反映具有对称或非对称Cole-Cole曲线的橡胶材料的动态特性。

Abstract

A fractional derivative model of five parameters is constructed by adding a Scott-Blair pot to the fractional derivative Zener model. Numerical analysis is conducted to understand the influence on the Cole-Cole curve of model parameters related to the fractional derivative operators. Dynamic mechanical analysis experiments are then performed on a rubber material usually used for vibration isolation. Using the measured data, the storage modulus, loss modulus and loss factor of the material are derived by taking advantage of the temperature equivalence principle, and model constants of the new fractional derivative model are identified. With validation from experiments, it is clearly demonstrated that the newly established fractional derivative model with five parameters can accurately describe the dynamic characteristics of rubber materials with a symmetric or asymmetric Cole-Cole curve.

关键词

Cole-Cole曲线 / 粘弹性 / 分数导数模型 / 动态力学实验 / 参数识别

Key words

Cole-Cole curve / visco-elasticity / fractional derivative model / dynamic mechanics experiment / parameter identification

引用本文

导出引用
赵永玲1,侯之超1,黄友剑2,刘建勋1,2. 橡胶材料的一种五参数分数导数模型[J]. 振动与冲击, 2015, 34(23): 37-41
ZHAO Yong-ling1, HOU Zhi-chao1,HUANG You-jian2,LIU Jian-xun2. A fractional derivative model with five parameters for rubber materials[J]. Journal of Vibration and Shock, 2015, 34(23): 37-41

参考文献

[1] 范仰才,李景德,符德胜.广义导纳圆[J].中山大学学报(自然科学版),1995, 34(3): 31-35.
FAN Yang-cai, LI Jing-de, FU De-sheng. Generalized admittance circles [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni. Natural Sciences, 1995, 34(3): 31-35.
[2] 于逢源.聚烯烃流动诱导结晶的流变学研究[D]. 上海: 上海交通大学, 2009.
YU Feng-yuan. Rheological study on the flow-induced crystallization of the femi-crystalline polyolefin [D]. Shanghai: Shanghai Jiaotong University, 2009.
[3] Pritz T. Analysis of four-parameter fractional derivative model for polymeric damping materials [J]. Journal of Sound and Vibration, 2003, 265: 935-953.
[4] Charles Lu. Characterize the high-frequency dynamic properties of elastomers using fractional calculus for FEM [C]. SAE paper, 2007-01-2417, 2007.
[5] 詹小丽, 张肖宁, 王端宜等. 改性沥青非线性粘弹性本构关系研究及应用[J]. 工程力学, 2009, 26(4): 187-191.
ZHAN Xiao-li, ZHANG Xiao-ning, WANG Duan-yi, et al. Study on nonlinear viscoelastic constitutive equation of modified asphalt and its applications [J]. Engineering Mechanics, 2009, 26(4): 187-191.
[6] 赵永玲, 侯之超. 基于分数导数的橡胶材料两种粘弹性本构模型[J].清华大学学报(自然科学版), 2013, 53(3): 378-383.
ZHAO Yong-ling, HOU Zhi-chao. Two viscoelastic constitutive models of rubber materials using fractional derivation [J]. Tsinghua Univ(Sci & Tech), 2013, 53(3): 378-383.
[7] 唐振寰,罗贵火,陈伟等.橡胶隔振器粘弹性5参数分数导数并联动力学模型[J]. 航空动力学报, 2013, 28(2): 275-282.
TANG Zhen-yuan, LUO Gui-huo, CHEN Wei, et al. Parallel dynamic model of rubber isolator about five-parameter fractional derivative [J]. Journal of Aerospace Power, 2013, 28(2): 275-282.
[8] Pritz T. Five-parameter fractional derivative model for polymeric damping materials [J]. Journal of Sound and Vibration, 2003, 265: 935-953.
[9] 侯宏, 高星, 孙亮等. 变频变温条件粘弹材料参数化数学模型[J]. 振动与冲击, 2013, 32(21): 209-213.
HOU Hong, GAO Xing, SUN Liang, et al. Parameterized mathematical model of a viscoelastic material under variations of temperature and frequency [J]. Journal of Vibration and Shock, 2013,32(21): 209-213.
[10] Scott Blair G W. Analytical and integrative aspects of the stress-strain-time problem [J]. Journal of Scientific Instruments, 1994, 21: 80-84.
[11] 杨挺青,罗文波,徐平等. 粘弹性理论与应用[M]. 北京: 科学出版社, 2004.
YANG Ting-qing, LUO Wen-bo, XU P, et al. Theory of viscoelasticity and its applications [M]. Beijing: Science Press, 2004.

PDF(1717 KB)

Accesses

Citation

Detail

段落导航
相关文章

/