弹性约束浅拱的内共振非线性模态

曾有艺 易壮鹏

振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 48-53.

PDF(1862 KB)
PDF(1862 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (23) : 48-53.
论文

弹性约束浅拱的内共振非线性模态

  • 曾有艺 易壮鹏
作者信息 +

Nonlinear Normal Modes Associated With Internal Resonance for Elastically Constrained Shallow Arch

  • ZENG Youyi; YI Zhuangpeng
Author information +
文章历史 +

摘要

动力系统采用弹性约束时自振特性、非线性模态与采用理想边界时存在差异, 约束刚度值将改变各种非线性动力行为产生的参数域, 本文采用多尺度法进行直接摄动构造了一端竖向弹性约束浅拱在发生2:1内共振时的非线性模态。结果表明: 内共振非线性系统存在单模态运动和耦合模态运动; 弹性约束的存在及不同取值将导致不同的非对称线性模态、形函数及内共振激发条件; 不同约束刚度时非线性模态的时空效应呈现不同的动力形态。

Abstract

When dynamic system is elastically constrained the natural vibrations and nonlinear normal modes are different from that for ideal boundary conditions, and the constrain stiffness values will change the parametric region of various nonlinear dynamics. The nonlinear normal modes of a shallow arch with one end vertically elastically constrained in case of two-to-one internal resonance are constructed by using the multi-scale method and direct perturbation in this paper. The research results show that the internal resonant nonlinear system has both single-mode motion and couple-mode motion. Also, the existence and various values of elastic constraint lead to different asymmetric linear modes, shape functions and internal resonance activation conditions. Moreover, the space-time effects of nonlinear normal modes with different constraint stiffness display different dynamic configurations.
 

关键词

弹性约束 / 浅拱 / 非线性模态 / 2:1内共振 / 多尺度法

Key words

 elastically constrained / shallow arch / nonlinear normal modes / 2:1 internal resonance / multi-scale method.

引用本文

导出引用
曾有艺 易壮鹏. 弹性约束浅拱的内共振非线性模态[J]. 振动与冲击, 2015, 34(23): 48-53
ZENG Youyi; YI Zhuangpeng. Nonlinear Normal Modes Associated With Internal Resonance for Elastically Constrained Shallow Arch[J]. Journal of Vibration and Shock, 2015, 34(23): 48-53

参考文献

[1]  Zhou L Q, Chen Y S, Chen F Q. Global bifurcation analysis and chaos of an arch structure with parametric and forced excitation [J], Mechanics Research Communications, 2010, 37(1): 67-71.
[2]  王钟羡, 江波, 孙保昌. 周期激励浅拱的全局分岔[J].浙江大学学报(自然科学版), 2004,25(1): 85-88. (Wang Zhong-xian, Jiang Bo, Sun Bao-Chang. Global bifurcation of shallow arch with periodic excitation [J]. Journal of Jiangsu University (Natural Science Edition), 2004, 25(1):85-88.(in Chinese))
[3]  Malhotra N, Namachchivaya N S. Chaotic dynamic of shallow arch structures under 1:2 resonance; Chaotic motion of shallow arch structures under 1:1 internal resonance [J]. Journal Engineering Mechanics, 1997, 123(6): 612-619, 620-627.
[4]  Xu J X, Huang H, Zhang P Z, Zhou J Q. Dynamic stability of shallow arch with elastic supports- application in the dynamic stability analysis of inner winding of transformer during short circuit [J]. International Journal of Non-Linear Mechanics, 2002, 37(4-5): 909-920.
[5]  Lacarbonara W, Arafat H N, Nayfeh A H. Non-linear interactions in imperfect beams at veering [J]. International Journal of Non-Linear Mechanics, 2005, 40(7): 987-1003.
[6]  康婷, 白应生, 孙惠香. 水平弹性支撑圆拱的动力特性研究[J]. 力学与实践, 2013,35(2):50-55. (Kang Ting, Bai Ying-sheng, Sun Hui-xiang. Dynamic characteristics of the horizontal elastic support circular arch [J]. Mechanics in Engineering, 2013, 35(2): 50-55. (in Chinese))
[7]  Rosenberg R M. The normal modes of nonlinear n-degree-of-freedom systems [J], Journal of Applied Mechanics, 1962, 29(1), 7-14.
[8]  Shaw S W, Peirre C. Nonlinear normal modes and invariant manifolds [J]. Journal of Sound and Vibration, 1991, 150(1):170-173.
[9]  Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. New York: John Wiley & Sons Inc. 1979.
[10]  Vakakis A F. Nonsimilar normal oscillations in a strongly nonlinear discrete system [J]. Journal of Sound and Vibration, 1992, 158(2): 341-361.
[11]  陈予恕, 吴志强. 非线性模态理论的研究进展[J]. 力学进展, 1997, 27(3): 289-300. (Chen Yu-shu, Wu Zhi-qiang. Advances in study on theories of nonlinear normal modes [J]. Advances in Mechanics, 1997, 27(3): 289-300.(in Chinese))
[12]  Nayfeh A H, Lacarbonara W, Chin C M, Nonlinear Normal Modes of Buckled Beams: Three-to- One and One-to-One Internal Resonances [J]. Nonlinear Dynamics, 1999, 18(3):253-273.
[13]  Li X Y, Chen Y S, Wu Z Q. Non-linear normal modes and their bifurcation of a class of systems with three double of pure imaginary roots and dual internal resonances [J]. International Journal of Non-Linear Mechanics, 2004, 39(2):189-199.
[14]  Mamandi A, Kargarnovin M H, Farsi S. Dynamic analysis of a simply supported beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes techniques under three-to-one internal resonance condition [J]. Nonlinear Dynamics, 2012, 70(2): 1147-1172.
[15]  Lacarbonara W, Rega G, Nayfeh A H. Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimenensional systems [J]. International Journal of Non-linear Mechanics. 2003, 38(6): 851-872.
[16]  Lacarbonara W, Rega G. Resonant non-linear normal modes. Part II: activation orthogonality conditions for shallow structural systems [J]. International Journal of Non-linear Mechanics. 2003, 38(6):873-887.

PDF(1862 KB)

Accesses

Citation

Detail

段落导航
相关文章

/