本文针对半车液压互联悬架防侧倾模型进行频域分析,建立了四自由度机械和液压耦合系统的动力学方程,根据系统的频响函数和路面输入分别得到垂直模态和侧倾模态下的加速度功率谱密度响应。采用Sobol全局灵敏度分析方法计算了液压参数对垂直响应和侧倾响应的灵敏度,并对计算结果进行分析。分析结果表明:与液压缸上下腔连接的阻尼阀的压力泄漏系数对垂直模态响应影响较大;蓄能器参数及与蓄能器连接的阻尼阀的压力泄露系数对侧倾模态响应影响较大。本文的研究可用于对汽车液压互联悬架系统进行平顺性评估以及后续的参数优化。
Abstract
A four-degree-of-freedom anti-roll half-car model is used to derive the mechanical and hydraulic coupled system dynamic equations in frequency domain in this paper. The frequency response functions and a road surface model are set up to achieve response such as bounce acceleration power spectrum density and roll acceleration power spectrum density. By applying a method of global sensitivity analysis called Sobol , the level of sensitivity of hydraulic parameter to bounce response and roll response are carried out. The obtained results indicate that valves connected to hydraulic chambers have a large impact on bounce vibration model and accumulator and the valves connected to it make a large impact on roll vibration model .This paper provides theoretical basis for car ride estimate and further parameter optimization of the hydraulically interconnected suspension.
关键词
液压互联悬架 /
加速度响应 /
灵敏度分析 /
Sobol方法
{{custom_keyword}} /
Key words
hydraulically interconnected suspension /
acceleration power spectrum density /
global sensitivity analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Smith M C. Walker G W. Interconnected vehicle suspension. Proc IMechE, Part D: Journal of Automobile Engineering,2005,219(3):295-307.
[2] Gay F R.Coudert N,Rifi I, et al. Development of hydraulic active suspension with feed forward and feedback design. SAE Technical Paper, 2001, Paper No:2000-01-0104.
[3] Mace N. Analysis and synthesis of passive interco-
nnected vehicle suspensions: [dissertation]. Cambridge: University of Cambridge,2004.
[4] 王增全,申焱华,杨珏.可控参数对连通式油气悬架性能影响[J].液压与气动,2011,10:8-11.
WANG Zeng-quan, SHEN Yan-hua, YANG Jue. Effect of controlled parameters on interconnect hydro-pneumatic suspension performances [J]. Hydraulic and Pneumatic, 2011(10):8-11.
[5] Sobol IM. Sensitivity Estimates for nonlinear mat-hematical models. Math Model Comput Exp,1993:407-414.
[6] Zhang N, Smith W A, Jeyakumaran J. Hydraulica-lly interconnected vehicle suspension: background and modelling. Vehicle System Dynamics,2010,48(1):17-40.
[7] Newland, D.E. An introduction to random vibrati-ons, spectral and wavelet analysis ,third edition,1997.
[8] Dodds,C.J. and Robson,J.D. The description of road surface roughness.J.Sound Vibr., 1973 (31): 175-183.
[9] Heath, A. N. Application of the isotropic road rou-ghness assumption. J. Sound Vibr,1987(115)131-144.
[10] 丁玉庆,马幼鸣.货车振动系统频率响应的模拟[J].振动与冲击,2000(19):61-67.
Ding yu-qing, Ma You-ming. A Frequency Response Simulation of Truck System [J]. Journal of vibration shock, 2000(19):61-67.
[11] 张晓航.防空导弹武器装备体系作战效能全局敏感性分析方法研究[D].长沙:国防科学技术大学,2010.
Zhang Xiao-hang. Research on the Global Sensitivity Analysis Method of Air Defense Missiles Weapon System-of-systems Combat Effectiveness[D]. National University of Defense Technology in Changsha,2010
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}