为了对空间光学遥感器进行冲击响应预测,提出了一种基于统计能量分析(Statistical Energy Analysis,SEA)原理的新方法;基于稳态SEA推导了瞬态SEA的能量流平衡方程,结合虚拟模态综合与仿真方法(Virtual Mode Synthesis and Simulation,VMSS)和SEA方法进行空间光学遥感器的冲击响应预测;首先根据SEA原理,建立了典型空间光学遥感器的简化SEA模型,采用理论计算和试验测试的方法,得到了该模型各子系统的模态密度、内损耗因子、耦合损耗因子;在火工品附近安装冲击加速度传感器,点火起爆,测得冲击加速度时域曲线,以该测试数据为分析模型的输入,基于SEA方法进行冲击响应分析,得到反射镜子系统、遮光罩子系统、载荷板子系统的冲击响应谱曲线,该曲线与试验数据比对表明,在低频段由于模态密度较低,预测精度较差,在高频段其一致性小于4dB,从而验证了该方法在结构高频冲击响应预测的有效性。
Abstract
In order to forecasting the shock responding of the space optics remote sensor, we put forward a new method based on Statistical Energy Analysis; deduce the equation of energy flow based on SEA, combining the Virtual Mode Synthesis and Simulation with the SEA to forecasting the shock responding of the space optics remote sensor, firstly, establishing the SEA model of representative optics remote sensor, and get the model’s mode density, inner wasting gene and coupling wasting gene through theory calculation and testing; we put two shock acceleration sensor nearby the source of shock which is used to detect the shock acceleration, and then input the data to the analysis model, we get the shock acceleration curve of envelop subsystem, loading board subsystem; and testing show that at low frequency because of the low model density the prediction precision is not as good as at high frequency, the error is only 4dB at high frequency, and this validate this method.
关键词
火工品 /
冲击响应 /
统计能量分析 /
虚拟模态综合
{{custom_keyword}} /
Key words
Explosive bolts /
Shock responding /
Statistical energy analysis /
Virtual mode synthesis and simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Conkling J A, Mocella C. Chemistry of pyrotechnics: basic principles and theory[M]. CRC Press, 2012.
[2] Alonso F D, Ferradás E G, Pérez J F S, Aznar A M, Gimeno J R, Alonso J M. Characteristic overpressure impulse distance curves for the detonation of explosives, pyrotechnics or unstable substances Original Research Article[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6):724-728.
[3] Mulville D R. Pyroshock Test Criteria[R]. National Aeronautics and Space Administration, 1999.
[4] Lee D O, Han J H, Jang H W, Woo S H, Kim K W. Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation[J]. J. of Aeronautical & Space Sciences, 2010, 11(1):49-57.
[5] Iadevaia M, Hal B V, Riobbo J L, Sas P P. Using statistical energy analysis for shock pulse predictions. Proceedings of ISMA, 2002, p.2337-2342.
[6] Humphry L H, Langley R S. Predicting shock response in uncertain structures using the Hybrid method. Journal of Physics: Conference Series, 2009, 181(1):1-8.
[7] Nefske, D.J., Sung, S.H., Power flowfinite element analysis of dynamic systems: basic theory and application to beams. Journal of Vibration, 111:94-100, 1989.
[8] Vlahopoulos, N., Garza, L.O., Numerical implementation, validation and marine applications of an energy finite element formulation. Journal of Ship Research, 43:143-156, 1999.
[9] 王军评,毛勇建,黄含军,董龙雷,统计能量分析法在爆炸分离冲击响应预示中的应用. 航天器环境工程,28(5):414-420, 2011.
Wang Jun-ping, Mao Yong-jian, Huang Han-jun, Dong Long-lei, Application of statistical energy analysis method in prediction of pyro-shock responses Spacecraft Environment Engineering, 28(5):414-420, 2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}