提出了一种基于小生境进化(种群进化)的模型确认方法,采用模式置信准则(Signature Assurance Criterion, SAC)和模式比例因子(Crossing Signature Scale Factor, CSF)与频响测试约束状态下的固有频率相结合的输出特征作为模型确认的输出响应,以降低输出特征个数并可利用全部频响分析的试验数据。参数修正过程中,采用距离判别方法分析和计算实验与仿真两个数据集之间的统计学差异,并通过逐步迭代、小生境进化达到模型确认的目的。算例仿真结果表明:所提出的基于小生境进化方法可用于结构动力学的频响函数模型确认,相关的频响函数输出特征作为动力学响应输出可以得到较高精度的确认结果。
Abstract
A structural dynamics model validation method based on the dynamic niching is presented to give an accurate validation outcome with niche migration. Signature Assurance Criterion (SAC) and Crossing Signature Scale Factor (CSF) of FRF, which are used to reduce the number of outputs and can use all the data of frequency response analysis, and resonance frequencies under the constraint conditions of frequency response experiment are put forward as the dynamic responses of the structure. Distance discrimination analysis (DDA) is used to quantify the fitness of each individual in the niche. The purpose of model validation is achieved through an iterative test-analysis correlation (TAC) procedure and niche mirror evolution. Simulation results show that the presented method as well as using SAC and CSF as the outputs of dynamic response can get satisfactory results in the model validation of structural dynamics.
关键词
模型确认 /
小生境进化 /
距离判别 /
频响函数
{{custom_keyword}} /
Key words
model validation /
dynamic niching /
distance discrimination analysis /
frequency response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Szekely G S,Pradlwarter H J. A detailed scatter analysis of the structural response of spacecraft[J]. ESA SP - 468,2001: 605.
[2] Doebling S W,Hemez F M,Schultze J F,et al. Overview of structural dynamics model validation activities at los Alamos national laboratory [C]. 43rd AIAA/ASME/ASCE/AHS /ASC Structures, Structural Dynamics and Materials Conference,Denver Colorado,2002: 22 - 25.
[3]郭勤涛,张令弥.结构动力学有限元模型确认方法研究 [J].应用力学学报, 2005, 22( 4) : 572 - 578.
GUO Qin-tao,ZHANG Ling-mi. Finite element model validation in structural dynamics [J].Chinese Journal of Applied Mechnics,2005, 22( 4) : 572 - 578.
[4] Sifeng Bi, Zhongmin Deng, Zhiguo Chen, Stochastic validation of structural FE-models based on hierarchical cluster analysis and advanced Monte Carlo simulation[J].Finite Elements in Analysis and Design, 2013,67,22-33.
[5] A. Esfandiari, F. Bakhtiari-Nejad, A. Rahai, M. Sanayei, Structural model updating using frequency response function and quasi-linear sensitivity equation, Journal of Sound and Vibration 326 (2009) 557–573.
[6]刘荣贺, 于开平, 刘炜. 基于频响函数数据的飞行器结构有限元模型修正及软件开发[J],强度与环境, 2010,37(5):1-7.
Liu Ronghe, Yu Kaiping, Liu Wei, Aircraft structure FEM model updating and software development based on frequency response function data [J]. Structure & Environment Engineering [J],2010,37(5):1-7.
[7] V. Meruane, Model updating using antiresonant frequencies identified from transmissibility functions, Journal of Sound and Vibration, 332 (2013) 807–820.
[8]Miller B L, Shaw M J. Genetic algorithms with dynamic niche sharing for multimodal function optimization[C]. Evolutionary Computation, 1996., Proceedings of IEEE International Conference on. IEEE, 1996: 786-791.
[9]C.D. Antonio, S.D. Claudio, M. Angelo, Where are the niches Dynamic fitness sharing, IEEE Trans. Evol. Comput. 2007,11(4): 453–465.
[10]陆青,梁昌勇,杨善林等,面向多模态函数优化的自适应小生境遗传算法,模式识别与人工智能,vol. 22(1):91-100, 2009
LU Qing,LIANG Chanyong, YANG Shanlin et.al, An Adaptive Niche Genetic Algorithm for Multimodal Function Optimization, PR & AI, 22(1)(2009),pp.91-100
[11]陈志国,邓忠民,毕司峰,基于Monte Carlo法的结构动力学模型确认,振动与冲击,vol.32(16):76-81,2013
CHEN Zhiguo, Deng Zhongmin, BI Sifeng, The Structural Dynamics Model Validation based on Monte Carlo Method, Journal of Vibration and Shock, 32 (16) (2013), pp. 76-81.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}