多级离心泵叶轮时序对振动性能影响的数值研究

谈明高 戴菡葳 刘厚林 丁 剑 丁 荣

振动与冲击 ›› 2015, Vol. 34 ›› Issue (24) : 117-122.

PDF(2613 KB)
PDF(2613 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (24) : 117-122.
论文

多级离心泵叶轮时序对振动性能影响的数值研究

  • 谈明高  戴菡葳    刘厚林  丁  剑  丁  荣
作者信息 +

Numerical research on the effect of impeller clocking position on vibration of multistage centrifugal pumps

  • Tan Minggao  Dai Hanwei  Liu Houlin  Ding Jian  Ding Rong
Author information +
文章历史 +

摘要

为研究节段式多级离心泵叶轮时序位置对流致振动的影响,结合CFD\FEM方法对考虑叶轮交错角度的泵体在水力激励作用下结构的动力响应进行了计算分析。结果表明,首级内压力脉动的频率、幅值和相位不受叶轮时序位置的影响;次级内压力脉动的频率同样没有发生明显变化,幅值随着时序角度的增大有微小增幅,而相位随着时序角度的改变发生明显变化。当时序角度刚好为叶轮叶片角度的一半时,次级转子内压力脉动相位刚好与首级错开90度,压力脉动方向与首级相反,导致轴向的激励减小,轴向振动存在相反的量,使得泵整体振动水平明显下降。

Abstract

In order to study the impeller clocking position in multistage centrifugal pumps on the fluid-induced vibration, the structural dynamic response of the pump casing under the fluid excitation was analyzed based on the combination of CFD and FEM methods. The simulation results indicate that the impeller clocking position has no influence on the frequency, amplitude and phase of the pressure pulsations in the first stage. The frequency of the pressure fluctuation in the second stage is also independent of the clocking position, and the amplitude increases slightly with the clocking position variation; however, the phase changes significantly with the increase of clocking position. When the clocking angle is just half the blade angle, the phase of the pressure pulsation in the second stage is shifted by 90 degrees comparing with the pressure fluctuation in the first stage. As such, the direction of the pressure pulsation in the second stage is opposite to the pressure in the first stage. This leads to a reduction of axial flow excitation and an opposite axial vibration amount, making the overall vibration levels drop obviously.
 

关键词

多级离心泵 / 时序效应 / 压力脉动 / 振动

Key words

 multistage centrifugal pump / clocking effect / pressure pulsation / vibration

引用本文

导出引用
谈明高 戴菡葳 刘厚林 丁 剑 丁 荣 . 多级离心泵叶轮时序对振动性能影响的数值研究[J]. 振动与冲击, 2015, 34(24): 117-122
Tan Minggao Dai Hanwei Liu Houlin Ding Jian Ding Rong. Numerical research on the effect of impeller clocking position on vibration of multistage centrifugal pumps[J]. Journal of Vibration and Shock, 2015, 34(24): 117-122

参考文献

[1] Dürrer B, Wurm F H, AG W. Noise sources in centrifugal pumps[C]//Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy. 2006: 203-207.
[2] Birajdar R, Patil R, Khanzode K. Vibration and noise in centrifugal pumps – sources and diagnosis methods[C]// Proceedings of the 3rd International Conferences on Integrity, Reliability and Failure, Porto/Portugal, 20-24 July, 2009: S1163_P0437.
[3] Gulich J F. Centrifugal pumps[M]. Springer, 2010.
[4] Spence R, Amaral-Teixeira J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests[J]. Computers & fluids, 2008, 37(6): 690-704.
[5] Spence R, Amaral-Teixeira J. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump[J]. Computers & Fluids, 2009, 38(6): 1243-1257.
[6] Spence R. CFD Analyses of Centrifugal Pumps with Emphasis on Factors Affecting Internal Pressure Pulsations[D]. Cranfield University, 2006.
[7] 姚志峰,王福军,杨敏,等. 叶轮形式对双吸离心泵压力脉动特性影响试验研究[J]. 机械工程学报,2011,47(12): 133-137.
Yao Zhifeng, Wang Fujun, Yang Min, et al. Effects of impeller type on pressure fluctuations in double-suction centrifugal pump[J]. Journal of Mechanical Engineering, 2011, 47(12): 133-137. (in chinese)
[8] 瞿丽霞,王福军,刘竹青,等. 大型双吸离心泵非定常流场数值分析[J]. 工程热物理学报,2010,31(增刊): 81-84.
Qu Lixia, Wang Fujun, Liu Zhuqing, et al .Numerical analysis of unsteady flow in a large double-suction centrifugal pump[J]. Journal of Engineering Thermophysics, 2010, 31(S): 81-84. (in chinese)
[9] 刘梅清,李秋玮,白耀华,等. 采用交错布置叶轮的双吸离心泵压力脉动分析[J]. 工程热物理学报,2010,31(增刊): 61-64.
Liu Meiqing, Li Qiuwei, Bai Yaohua, et al. Pressure pulsation analysis of a double suction centrifugal pump with staggered arrangement impeller[J]. Journal of Engineering Thermophysics, 2010, 31(S): 61-64. (in chinese)
[10] Parrondo-Gayo J L, Gonzalez-Perez J, Fernández-Francos J. The effect of the operating point on the pressure fluctuations at the blade passage frequency in the volute of a centrifugal pump[J]. Journal of fluids engineering, 2002, 124(3): 784-790.
[11] Dong R, Chu S, Katz J. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump[J]. Journal of Turbomachinery, 1997, 119(3): 506-515.
[12] Barrio R, Fernández J, Blanco E, et al. The effect of impeller cutback on the fluid-dynamic pulsations and load at the blade-passing frequency in a centrifugal pump[J]. Journal of Fluids Engineering, 2008, 130(11), article number:111102.
[13] 江伟,李国君,张新盛. 离心泵叶片出口边倾斜角对压力脉动的影响[J]. 排灌机械工程学报,2013,31(5): 369-372.
Jiang Wei, Li Guojun, Zhang Xinsheng. Effect of oblique angle of blade trailing edge on pressure fluctuation in centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(5): 369-372. (in chinese)
[14] Solis M, Bakir F, Khelladi S, et al. Numerical Study on Pressure Fluctuations Reduction in Centrifugal Pumps: Influence of Radial Gap and Splitter Blades[J]. ISRN Mechanical Engineering, 2011, 2011.
[15] Majidi K. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachinery, 2005, 127(2): 363-371.
[16] Marscher W D. An End-User’s Guide to Centrifugal Pump Rotordynamics[C]// Proceedings of the 23rd Pump Users Symposium. 2007: 69-93.
[17] Kaiser T F, Osman R H, Dickau R O. Analysis Guide for Variable Frequency Drive Operated Centrifugal Pumps[C]//Proceedings of the 24th International Pump User’s Symposium, Texas: Texas A&M University, USA. 2008: 81-106.
[18] Bonet J, Peraire J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1): 1-17.
 
 

PDF(2613 KB)

Accesses

Citation

Detail

段落导航
相关文章

/