用电火花加工方法在列车制动盘试样表面上加工出不同尺寸径向均匀分布的沟槽,选用列车制动片材料为对磨副,采用面-面接触模式,对沟槽表面和光滑表面进行摩擦噪声对比试验,研究沟槽型织构化表面对摩擦尖叫噪声的影响,并在试验基础上利用复特征值分析法和瞬态动力学分析法进行数值模拟分析。试验与数值分析结果均表明相比原始未处理光滑表面,沟槽型表面织构能降低制动盘试样的界面摩擦尖叫噪声。制动片试样滑过沟槽织构表面并碰撞沟槽棱边时将引起摩擦力的波动,进而打断摩擦界面的连续接触并扰乱系统的连续自激振动,摩擦力和振动加速度无法形成连续的高频成分并最终降低摩擦尖叫噪声。
Abstract
Groove-textured surfaces with different dimensions and regular angle intervals are manufactured on train brake disc materials by electromachining. Experimental study is conducted to investigate the influence of groove-textured surfaces on friction-induced noise in a flat-on-flat configuration, by using train brake pad as counterface. Moreover, numerical study is performed to simulate the experimental process by using methods of complex eigenvalue analysis and dynamic transient analysis. Both the experimental and numerical results show that the existence of groove-textured surfaces on brake disc materials can reduce the squeal generation, compared to the case of untreated smooth surface. The interface friction force fluctuates when the brake pad specimen slides across the groove-textured surface, and the collision between the edges of groove and pad specimen will interrupt the continuous contact of the friction surfaces and disturb the continuous self-excited of the friction system. No continuous high frequency components of friction force and vibration acceleration are formed and consequently the squeal noise is significantly reduced.
关键词
摩擦尖叫噪声 /
有限元 /
表面织构 /
数值模拟
{{custom_keyword}} /
Key words
Friction squeal noise /
Finite element /
Surface texturing /
Numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Akay A. Acoustics of friction [J]. Journal of the Acoustic Society of American, 2002, 111(4): 1525-1548.
[2] Massi F, Baillet L, Culla A. Structural modifications for squeal noise reduction:numerical and experimental validation [J]. Vehicle Design,2009,51(1/2):168-189.
[3] Nouby M, Srinivasan K. Disc Brake Squeal Reduction Through Pad Structural Modifications [C]. Proceedings of International Conference on Recent and Emerging Advanced Technologies in Engineering (ICREATE 2009), 2009. Kuala Lumpur, Malaysia.
[4] Oberst S, Lai J C S. Numerical prediction of brake squeal propensity using acoustic power calculation [C]. Proceedings of ACOUSTICS 2009, November 23-25. Adelaide, Australia.
[5] Nouby M, Mathivanan D, Srinivasan K. A combined approach of complex eigenvalue analysis and design of experiments (DOE) to study disc brake squeal [J]. International Journal of Engineering, Science and Technology 2009, 1(1): 254–271.
[6] Lin S C, Guan C C, Abu Bakar A R, Jamaluddin M R, et al.. Disc Brake Squeal Suppression Through Chamfered and Slotted Pad [J]. Vehicle Structures & Systems, 2011,3(1): 28-35.
[7] 张立军,陈前银,刁冲等. 摩擦衬片开槽方式对盘式制动器摩擦尖叫的影响[C]. 中国汽车工程学会年会论文集精选,2013,22:303-313.
Zhang Lijun, Chen Qianyin, Diao Chong, et al. Impact of various groovesin brake pads in disc brake squeal [C]. China academic journal electronic publishing house, 2013,22: 303-313.
[8] Lin S C, Abu Bakar A R, Wan Harujan W M M. Suppressing disc brake squeal through structural modifications [J]. Jurnal Mekanikal,2009,29:67-83.
[9] AbuBakar A R, Ouyang H. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal [J]. International Journal of Vehicle Noise and Vibration, 2006, 2(2):143-155.
[10] Cote A, Atalla N, Guyader JL. Vibroacoustic analysis of an unbaffled rotating disk [J]. Journal of the Acoustical Society of America,1998, 103(3):1483–1492.
[11] Ouyang H, Nack W, Yuan Y, Chen F. Numerical analysis of automotive disc brake squeal: a review [J]. International Journal of Vehicle Noise and Vibration 2005, 1(3/4):207-231.
[12] 王正国,莫继良,王安宇等. 沟槽型表面织构对界面摩擦振动噪声特性的影响[J]. 振动与冲击,2013,32 (23) :175-179.
WANG Zheng-guo, MO Ji-liang, WANG An-yu, et al. Effect of grooved surface texture on interface friction vibration and noise properties [J]. Journal of vibration and shock. 2013, 32 (23): 175-179.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}