基于旋涡风机内螺旋形流动,采用面元法和螺旋桨尾流面建模法建立叶片表面气动载荷理论计算模型。根据FW-H方程所得的叶片旋转噪声结果对旋涡风机壳体进行简化,基于Fluegge薄壳理论和拉格朗日能量法建立了旋涡风机壳体动力学模型,并结合边界元法建立了壳体远场声辐射的理论计算模型。理论计算的壳体声辐射指向性表明,壳体声辐射主要是在风机的周向位置,与试验结果一致。且较商业软件仿真,采用本文理论方法的计算时间大幅减少。最后利用理论计算模型,探讨了叶片数、叶片厚度、叶片宽度和叶片弯角对叶片旋转噪声激励下壳体声辐射的影响规律:叶片数的增加使得声压级逐渐减小;叶片厚度的改变对平均声压级几乎没有影响;随着叶片宽度的增加,声压级先减小再增大;声压级随前向叶片弯角的增大而增大,随后向弯角的增加而减小。
Abstract
On the basis of the spiral-like flow in the regenerative blower, with the panel method and the modeling method of flow field under propeller, a theoretical model is set up to calculate the aerodynamic load on the blade surface. Based on the FW-H equation, the regenerative blower’s shell is simplified. With the thin shell theory and the Lagrange energy method, a dynamic model of regenerative blower’s shell is set up. Using the boundary integral method, the theoretical calculation model of shell far field sound radiation is established. The distribution of sound radiation shows that the shell sound radiation is mainly in circumference, which is consistent with the test result. The calculation time is greatly reduced using the theoretical proposed by this paper than using the commercial software. According to the model, the influence of blade number, blade thickness, blade width and blade angle on shell sound radiation under the rotational noise excitation is studied at last. The sound pressure level (SPL) decreases with the increase of blade number. The blade thickness nearly has no effect on the SPL. With the increase of blade width, the SPL decreases at first and then increases. As the blade angle increases, the SPL of forward-curved blade increases and that of backward-curved blade decreases.
关键词
叶片旋转噪声 /
薄壳理论 /
壳体声辐射 /
叶片参数
{{custom_keyword}} /
Key words
blade rotation noise /
thin shell theory /
shell sound radiation /
blade parameters
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Raheel M, Engeda A. Current status, design and performance trends for the regenerative flow compressor and pumps[J]. American Society of Mechanical Engineers, 2002, 7: 99-110.
[2] 韩惠君,左曙光. 叶片参数对旋涡风机性能的影响[J]. 流体机械,2012, 40(7): 15-19.
HAN Hui-jun, ZUO Shu-guang. Effect of blade parameters on performance of regenerative blower[J]. Fluid machinery, 2012, 40(7): 15-19.
[3] 康强,左曙光,张世炜. 燃料电池轿车用旋涡风机噪声特性分析[J]. 振动与冲击,2011(12): 235-240.
KANG Qiang, ZUO Shu-guang, ZHANG Shi-wei. Noise feature analysis foe a vortex blower in fuel cell vehicles[J]. Journal of vibration and shock, 2002, 7: 99-110.
[4] 左曙光,韦开君,宋立廷,等. 燃料电池车用漩涡风机壳体辐射噪声数值预测[J]. 噪声与振动控制,2013(03): 142-146.
ZUO Shu-guang, WEI Kai-jun, SONG Li-ting, HAN Hui-jun. Numerical Prediction of Radiation Noise for Vibrating Shell of a Regenerative Blower in Fuel-cell Vehicles[J]. Noise and vibration control, 2013(03): 142-146.
[5] Lee S, Heo S, Cheong C. Prediction and reduction of internal blade-passing frequency noise of the centrifugal fan in a refrigerator[J]. International Journal of Refrigeration, 2010, 33(6): 1129-1141.
[6] 左曙光,宋立廷. 旋涡风机壳体在内流场作用下的动力响应[J]. 振动.测试与诊断,2013(05): 851-855.
ZUO Shu-guang, SONG Li-ting. Dynamic Response of the Regenerative Blower’s Shell Under the Action of the Internal Flow Field[J]. Journal of Vibration,Measurement & Diagnosis, 2013(05): 851-855.
[7] 张永坤,熊鹰. 基于面元法及模型试验的船舶螺旋桨噪声预报方法[J]. 武汉理工大学学报(交通科学与工程版),2008(05): 818-821.
ZHANG Yong-kun, XIONG Ying. Prediction of ship propeller noise using surface panel method and experimental investigations[J]. Journal of Wuhan University of Technology (Transportation Science& Engineering), 2008(05): 818-821.
[8] Yon I S, Park M R, Chung M K. Improved momentum exchange theory for incompressible regenerative turbomachines. Proe. IMechE[J]. Part A: Journal of Power and Energy. 2005. 219:567-581.
[9] Čudina M, Prezelj J. Noise generation by vacuum cleaner suction units: Part I. Noise generating mechanisms–An overview[J]. Applied acoustics, 2007, 68(5): 491-502
[10] Goldstein M E. Aeroacoustics[J]. New York, McGraw-Hill International Book Co., 1976.
[11] Farassat F, Brentner K S. The acoustic analogy and the prediction of the noise of rotating blades[J]. Theoretical and computational fluid dynamics, 1998, 10(1-4): 155-170.
[12] 张琛璘. 叶片噪声激励下旋涡风机壳体声辐射计算方法及应用研究[D]. 上海: 同济大学汽车学院,2014:32-40.
ZHANG Chen-lin. The Computation method and application of regenerative blower’s sound radiation on the blade’s noise excitement[D]. Shanghai: Tongji University. School of Automotive Studies, 2014:32-40.
[13] 陈美霞,谢坤,魏建辉. 带框架肋骨圆柱壳体振动特性分析[J]. 华中科技大学学报(自然科学版),2014, 42(03): 127-132.
CHEN Mei-xia, XIE Kun, WEI Jian-hui. Vibration characteristics analysis of cylinder shell with frame rib[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2014,42(03):127-132.
[14] Kwak M K, Heo S, Jeong M. Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators[J]. Journal of Sound and Vibration, 2009, 321(3): 510-524.
[15] Sohn J W, Choi S B, Kim H S. Vibration control of smart hull structure with optimally placed piezoelectric composite actuators[J]. International Journal of Mechanical Sciences, 2011, 53(8): 647-659.
[16] Chapelle D, Bathe K J. The finite element analysis of shells: fundamentals[M]. Berlin: Springer, 2011.
[17] Brebbia C A. Boundary element methods in acoustics[M]. Southampton, Boston: Computational Mechanics Publications, 1991.
[18] BatheK J. Finite element procedures[M] .laus-Jurgen Bathe, 2006.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}