基于Floquet理论的旋转风机叶片动力失速气弹稳定性研究

李迺璐 1,穆安乐2,Mark J. Balas 3

振动与冲击 ›› 2015, Vol. 34 ›› Issue (24) : 82-88.

PDF(2634 KB)
PDF(2634 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (24) : 82-88.
论文

基于Floquet理论的旋转风机叶片动力失速气弹稳定性研究

  • 李迺璐 1 ,穆安乐2,Mark J. Balas 3
作者信息 +

Aeroelastic stability analysis of the rotating stall wind turbine blade based on Floquet Theory

  •   Nailu Li 1   Anle Mu 2  Mark J. Balas 2 
Author information +
文章历史 +

摘要

本文研究旋转风力机叶片动力失速气弹稳定性问题。叶片结构采用标量化的挥舞和扭转自由度耦合的振动运动模型,旋转风机叶片的气动力由Beddoes-Leishman失速模型来模拟,通过攻角在深度失速区域内的变化来计算出周期时变的非线性气动失速负载。在系统静平衡点附近对非线性气弹系统进行线性化,采用Floquet理论分析旋转叶片动力失速气弹稳定性,其结果得到系统时域响的验证。通过数值分析,揭示了挥舞扭转固有频率比和结构阻尼对颤振边界的影响。

Abstract

Aeroelastic stability of the rotating wind turbine blade is studied for stalled-induced vibration. The blade structure model is a normalized vibration system with motions of flapwise and torsional deflections. The aerodynamic force of the rotating blade is offered by Beddoes-Leishman dynamic model via computation of nonlinear aerodynamic stall load at the varying angle of attack in deep-stall range. Based on the linearized aeroelastic system, the aeroelastic stability of the rotating stall blade is analyzed by Floquet theory, and the results are verified by system responses in time domain. It also reveals the effect of ratio between flapwise and torsional natural frequency, and the structure stiffness on flutter boundary.

关键词

旋转风机叶片 / 气动失速 / Floquet理论 / Beddoes-Leishman模型

Key words

rotating wind turbine blade / stall-induced vibration / Floquet theory / Beddoes-Leishman model

引用本文

导出引用
李迺璐 1,穆安乐2,Mark J. Balas 3. 基于Floquet理论的旋转风机叶片动力失速气弹稳定性研究[J]. 振动与冲击, 2015, 34(24): 82-88
Nailu Li 1 Anle Mu 2 Mark J. Balas 2 . Aeroelastic stability analysis of the rotating stall wind turbine blade based on Floquet Theory[J]. Journal of Vibration and Shock, 2015, 34(24): 82-88

参考文献

[1] Chaviaropoulos P K. Flap/lead lag aeroelastic stability of wind turbine blade section[J]. Wind Energy, 1999, (2):99-112.
[2] Galvanetto U., Peiro J., An assessment of some effects of the nonsmoothness of the Leishman-Beddoes dynamic stall model on the nonlinear dynamics of a typical aerofoil section [J], Journal of Fluids and Structures, 2008,(24):151-163.
[3] 任勇生,林学海. 风力机叶片挥舞/摆振的动力失速非线性气弹稳定性研究[J]. 振动与冲击,2010,29(1):121-124.
REN Yong-sheng, LIN Xue-hai. Flap/lead-lag nonlinear aeroelastic stability of a wind turbine blade system during dynamic stall[J]. Journal of Vibration and Shock, 2010, 29(1):121-124.
[4] 任勇生,刘廷瑞, 杨树莲. 风力机复合材料叶片的动力失速气弹稳定性研究[J]. 机械工程学报,2011,47( 12) : 113-125.
REN Yong-sheng,LIU Ting-rui,YANG Shu-lian. Aeroelastic
    stability analysis of composite wind turbine blade dynamic stall[J].Chinese Journal of Mechanical Engineering,2011,47( 12) : 113 -125.
[5] Leishman J G, Beddoes T S. A semi-empirical model for dynamic stall[J]. J. Am Helicopter Soc 1989, 34(3): 3-17.
[6] 刘廷瑞,任勇生,杨兴华. 基于拟合气弹系数的气弹稳定性分析[J]. 太阳能学报,2010, 31(4):153-516.
LIU Ting-rui, REN Yong-sheng, YANG Xing-hua. Aeroelastic stability analysis based on fitted aerodynamic coefficients[J].  Acta Energiae Solaris Sinica, 2010, 31(4):153-516.
[7] 任勇生,张明辉. 水平轴风力机叶片的弯扭耦合气弹稳定性研究[J]. 振动与冲击,2010, 29(7): 196-200.
REN Yong-sheng, ZHANG Ming-hui. Aeroelastic stability of a horizontal axis wind turbine blade with bending-torsion coupled [J]. Journal of vibration and shock, 2010, 29(7): 196-200.
[8] 任勇生,杜向红,杨树莲. 风力机复合材料柔性叶片的颤振分析[J]. 振动与冲击,2011, 30(9):64-69.
REN Yong-sheng,DU Xiang-hong,YANG Shu-lian. Flutter
    analysis of composite flexible wind turbine blades[J]. Journal of Vibration and Shock,2011,30( 9) : 64 -69,128.
[9] Mahajan A J, Kaza K.R.V., Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter [J], Journal of Fluids and Structures, 1993, (7):87-103.
[10] Hansen M H, Gaunaa M and Madsen H A, A Beddoes-Leishman Type dynamic stall model in state-space and indicial formulations [R]. Riso National Laboratory, Denmark, 2004.
[11] Kallesoe B S. A low-order model for analysing effects of blade fatigue load control [J]. Wind Energy, 2006, (9):421-436.
[12] Balas, M J, Lee Y J. Controller Design of Linear Periodic Time-Varying System[C]// Presented on Proceddings of the American Control Conference, Albuquerque, NM, USA, 1997, (5): 2667 - 2671.
[13] Li N, Balas M J. Aeroelastic control of a wind turbine blade using microtabs based on UA97W300-I0 Airfoil[J]. Wind Engineering, 2013, 37(5): 501-516.

PDF(2634 KB)

Accesses

Citation

Detail

段落导航
相关文章

/