具有形状记忆合金丝的复合材料轴转子系统的振动与稳定性

任勇生;赵仰生;安瑞君;代其义

振动与冲击 ›› 2015, Vol. 34 ›› Issue (3) : 136-143.

PDF(1717 KB)
PDF(1717 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (3) : 136-143.
论文

具有形状记忆合金丝的复合材料轴转子系统的振动与稳定性

  • 任勇生,赵仰生,安瑞君,代其义
作者信息 +

Vibration and stability of SMA wires composite shaft -rotor systems

  • Ren Yongsheng, Zhao Yangsheng, An Ruijun, Dai Qiyi
Author information +
文章历史 +

摘要

提出具有SMA丝的复合材料轴-盘-刚性支承转子系统的数学模型,研究转子系统的振动与稳定性。将轴视为一个平行于轴线方向埋入SMA丝的薄壁复合材料空心梁,盘为各向同性刚性圆盘, 轴位于刚性轴承上。基于变分渐进法(VAM)描述复合材料薄壁梁的变形,基于Brinson热力学本构方程计算SMA丝的回复应力,采用Hamilton原理推导出系统的运动方程,采用Galerkin法进行模型离散化和近似数值计算。着重分析SMA丝含量和初始应变对复合材料轴振动固有频率和转子系统临界转速的影响。研究结果表明,本文建立的动力学模型能够用于揭示SMA对转子系统的振动与稳定性的影响机理。

Abstract

A dynamical model of the rotor system which includes the composite shaft with shape memory alloy (SMA) wires embedded parallel to the shaft axis, isotropic rigid disks and the stiff bearings, is presented and then used to predict natural frequencies and dynamical stability of the rotor systems. A composite thin-walled beam theory based on variational asymptotically approach(VAM) is employed to describe the deformation of the shaft. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is used to calculate the recovery stress of the constrained SMA wires. The Hamilton’s principle is used to derive the motion equations of the rotor system, which are discretized and solved by Galerkin’s method. Emphasis is palced on the influcence of SMA wire fraction and initial strain into natural frequencies and critical speeds. Results show that the model presented in this paper can be used to highlight the effect SMA on the dynamic characteristics of the rotor system.

关键词

形状记忆合金 / 复合材料轴 / 转子系统 / 振动与稳定性

Key words

shape memory alloy / composite shaft / rotor system / vibration and stability

引用本文

导出引用
任勇生;赵仰生;安瑞君;代其义. 具有形状记忆合金丝的复合材料轴转子系统的振动与稳定性[J]. 振动与冲击, 2015, 34(3): 136-143
Ren Yongsheng;Zhao Yangsheng;An Ruijun;Dai Qiyi. Vibration and stability of SMA wires composite shaft -rotor systems[J]. Journal of Vibration and Shock, 2015, 34(3): 136-143

PDF(1717 KB)

Accesses

Citation

Detail

段落导航
相关文章

/