裂尖具线性分布约束应力的运动裂纹模型及其解析解

唐雪松;陈旻炜;高常辉

振动与冲击 ›› 2015, Vol. 34 ›› Issue (3) : 183-187.

PDF(1537 KB)
PDF(1537 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (3) : 183-187.
论文

裂尖具线性分布约束应力的运动裂纹模型及其解析解

  • 唐雪松,陈旻炜,高常辉
作者信息 +

A MODEL OF MOVING CRACK WITH A LINEAR DISTRIBUTION OF RESTRAINING STRESSES IN THE CRACK TIP ZONE

  • Tang Xuesong (X.S. Tang), Chen Minwei, Gao Changhui
Author information +
文章历史 +

摘要

以恒定速度运动的Griffith裂纹解析解为著名的Yoffe解。静止裂纹的条状屈服模型即Dugdale模型,将其推广到运动裂纹模型时发现,当裂纹运动速度跨越Rayliegh波速时,裂纹张开位移COD趋于,且表现为间断。通过在裂尖引入一个约束应力区及两个速度效应函数,假设约束应力为线性分布,采用复变函数方法,求得动态应力强度因子SIF与裂纹张开位移COD的解析解。新的结果,在Rayleigh波速下裂纹张开位移连续且为有限值。给出了裂纹张开位移的一些数值结果,获得了一些有意义的结论。

Abstract

The analytical solution of moving Griffith crack model with a constant speed is well known as the Yoffe solution. For a static crack, the strip yielding model is well known as the Dugdale model. It is found that when the Dugdale model is generalized to the moving crack case, the crack opening displacement (COD) is discontinuous with the positive and negative infinite at the Rayleigh wave speed. A restraining stress zone is attached to the crack tip while two speed effect functions are introduced. Assume that there is a linear distribution in the restraining stress zone. The complex function approach is employed to solve the problem. Analytical solutions of dynamic stress intensity factor (SIF) and crack opening displacement (COD) are then obtained. The new COD result is continuous and is a finite value at the Rayleigh wave speed. Some numerical results of COD are given. Some valuable conclusions are obtained.


关键词

运动裂纹 / I型裂纹 / 约束应力 / 复变函数方法 / 应力强度因子SIF / 裂纹张开位移COD

Key words

moving crack / mode I crack / restraining stress / complex function approach / stress intensity factor (SIF) / crack opening displacement (COD)

引用本文

导出引用
唐雪松;陈旻炜;高常辉. 裂尖具线性分布约束应力的运动裂纹模型及其解析解[J]. 振动与冲击, 2015, 34(3): 183-187
Tang Xuesong (X.S. Tang);Chen Minwei;Gao Changhui. A MODEL OF MOVING CRACK WITH A LINEAR DISTRIBUTION OF RESTRAINING STRESSES IN THE CRACK TIP ZONE[J]. Journal of Vibration and Shock, 2015, 34(3): 183-187

PDF(1537 KB)

Accesses

Citation

Detail

段落导航
相关文章

/